A tentative review is presented of various approaches for numerical simulations of two-fluid gaseous mixtures at high density ratios, as they have been applied to the Rayleigh--Taylor instability (RTI). Systems exhibiting such RTI behaviour extend from atomistic sizes to scales where the continuum approximation becomes valid. Each level of description can fit into a hierarchy of theoretical models and the governing equations appropriate for each model, with their assumptions, are presented. In particular, because the compressible to incompressible limit of the Navier-Stokes equations is not unique and understanding compressibility effects in the RTI critically depends on having the appropriate basis for comparison, two relevant incompressible limits are presented. One of these limits has not been considered before. Recent results from RTI simulations, spanning the levels of description presented, are reviewed in connection to the material mixing problem. Owing to the computational limitations, most in-depth RTI results have been obtained for the incompressible case. Two such results, concerning the asymmetry of the mixing and small-scale anisotropy anomaly, as well as the possibility of a mixing transition in the RTI, are surveyed. New lines for further investigation are suggested and it is hoped that bringing together such diverse levels of description may provide new ideas and increased motivation for studying such flows. [ABSTRACT FROM AUTHOR]