1. p38/SAPK2 controls gap junction closure in astrocytes.
- Author
-
Zvalova D, Cordier J, Mesnil M, Junier MP, and Chneiweiss H
- Subjects
- Animals, Astrocytes drug effects, Cells, Cultured, Gap Junctions drug effects, Interleukin-1 pharmacology, Mice, Sorbitol pharmacology, p38 Mitogen-Activated Protein Kinases, Astrocytes enzymology, Gap Junctions enzymology, Mitogen-Activated Protein Kinases metabolism
- Abstract
Astrocyte gap junction communication (GJC) is thought to contribute to death signal propagation following central nervous system injury, noteworthy in some ischemia/anoxia models. The inhibition of p38/stress-activated protein kinase 2 (p38/SAPK2) by a pyrimidyl imidazole derivative has been reported to reduce the extent of the lesion area after cerebral ischemia. Therefore, interleukin-1beta (IL-1beta), which contributes to stroke-induced brain injury and activates p38/SAPK2, and hyperosmolarity induced by sorbitol, a potent stimulus of p38/SAPK2 in non-neuronal cells, were used to investigate a possible involvement of p38/SAPK2 in GJC modulation in mouse cultured astrocytes. Both stimuli inhibited dye coupling within minutes. The IL-1beta effect was transient, while that of sorbitol lasted up to 90 min. Both stimuli induced a rapid p38/SAPK2 activation, the kinetic of which matched that of induction of dye coupling inhibition. Immunocytochemical studies showed that IL-1beta and sorbitol induced a p38/SAPK2 translocation from the nucleus to the cytoplasm. The pharmacological agent SB203580 specifically blocked p38/SAPK2 activation, cytoplasmic translocation and reversed the IL-1beta and sorbitol-induced inhibition of GJC. Further characterization of the p38/SAPK2 mode of action on GJC, performed with sorbitol, revealed an increased phosphorylation of protein kinase C (PKC) substrates abolished by both PKC inhibitors and SB203580. Expression and serine phosphorylation of connexin 43, the main component of astrocyte gap junctions, were unchanged, suggesting the existence of additional intracellular signaling mechanisms modulating the channel gating. Altogether, these results demonstrate that p38/SAPK2 is a central mediator of IL-1beta and sorbitol inhibitory actions on GJC and establish PKC among the distal effectors of p38/SAPK2., (Copyright 2004 Wiley-Liss, Inc.)
- Published
- 2004
- Full Text
- View/download PDF