• 1-min and 5-min integration time rain rates were measured. • Two rain rate models were used to predict 1-min rain rate. • The measured and predicted 1-min rain rates were compared. • Lavergnat-Gole model is the optimal rain rate prediction model. An important characteristic of rainfall levels at a particular place is the statistical distribution of rainfall rate. In this paper, 5-min integration time rainfall data for the Northcentral region of Nigeria was obtained from the Tropospheric Data Acquisition Network (TRODAN), Anyigba, Nigeria. Also, 1-min integration time rainfall was measured at Minna, Nigeria. In order to obtain the optimal rain rate model suitable for this region, two globally recognised rain rate models were critically evaluated and compared with the 1-min measurements. These are the ITU-R P.837-7 and Lavergnat-Gole (L-G) models. The results obtained showed that the ITU-R P.837-7 and L-G models respectively underestimated the measured rain rate by 7.3 mm/h and 9 mm/h at time percentage exceedance of 0.1%, while they underestimated the measured rain rate by 23.4 mm/h and 13 mm/h respectively at 0.01%. At 0.001%, the measured rain rate was overestimated by the ITU-R P.837-7 and L-G models by 27.4 mm/h and 3 mm/h respectively. Further performance evaluation of the predefined models was carried out using different error metrics such as sum of absolute error (SAE), mean absolute error (MAE), root mean square error (RMSE), standard deviation (STDEV) and Spearman's rank correlation. The results obtained adjudged the Lavergnat-Gole model as the best rain rate prediction model for this region. [ABSTRACT FROM AUTHOR]