1. HIF-1α (Hypoxia-Inducible Factor-1α) Promotes Macrophage Necroptosis by Regulating miR-210 and miR-383.
- Author
-
Karshovska E, Wei Y, Subramanian P, Mohibullah R, Geißler C, Baatsch I, Popal A, Corbalán Campos J, Exner N, and Schober A
- Subjects
- Adenosine Triphosphate metabolism, Animals, Aorta pathology, Atherosclerosis genetics, Atherosclerosis pathology, Cells, Cultured, Disease Models, Animal, Energy Metabolism, Gene Expression Regulation, Glycoside Hydrolases genetics, Glycoside Hydrolases metabolism, Hypoxia-Inducible Factor 1, alpha Subunit deficiency, Hypoxia-Inducible Factor 1, alpha Subunit genetics, Inflammation genetics, Inflammation pathology, Macrophages pathology, Male, Mice, Inbred C57BL, Mice, Knockout, ApoE, MicroRNAs genetics, Mitochondria metabolism, Mitochondria pathology, Oxidoreductases Acting on CH-CH Group Donors genetics, Oxidoreductases Acting on CH-CH Group Donors metabolism, Reactive Oxygen Species metabolism, Signal Transduction, Aorta metabolism, Atherosclerosis metabolism, Hypoxia-Inducible Factor 1, alpha Subunit metabolism, Inflammation metabolism, Macrophages metabolism, MicroRNAs metabolism, Necroptosis
- Abstract
Objective: Inflammatory activation changes the mitochondrial function of macrophages from oxidative phosphorylation to reactive oxygen species production, which may promote necrotic core formation in atherosclerotic lesions. In hypoxic and cancer cells, HIF-1α (hypoxia-inducible factor) promotes oxygen-independent energy production by microRNAs. Therefore, we studied the role of HIF-1α in the regulation of macrophage energy metabolism in the context of atherosclerosis. Approach and Results: Myeloid cell-specific deletion of Hif1a reduced atherosclerosis and necrotic core formation by limiting macrophage necroptosis in apolipoprotein E-deficient mice. In inflammatory bone marrow-derived macrophages, deletion of Hif1a increased oxidative phosphorylation, ATP levels, and the expression of genes encoding mitochondrial proteins and reduced reactive oxygen species production and necroptosis. microRNA expression profiling showed that HIF-1α upregulates miR-210 and downregulates miR-383 levels in lesional macrophages and inflammatory bone marrow-derived macrophages. In contrast to miR-210 , which inhibited oxidative phosphorylation and enhanced mitochondrial reactive oxygen species production, miR-383 increased ATP levels and inhibited necroptosis. The effect of miR-210 was due to targeting 2,4-dienoyl-CoA reductase, which is essential in the β oxidation of unsaturated fatty acids. miR-383 affected the DNA damage repair pathway in bone marrow-derived macrophages by targeting poly(ADP-ribose)-glycohydrolase (Parg), which reduced energy consumption and increased cell survival. Blocking the targeting of Parg by miR-383 prevented the protective effect of Hif1a deletion in macrophages on atherosclerosis and necrotic core formation in mice., Conclusions: Our findings unveil a new mechanism by which activation of HIF-1α in inflammatory macrophages increases necroptosis through microRNA-mediated ATP depletion, thus increasing atherosclerosis by necrotic core formation.
- Published
- 2020
- Full Text
- View/download PDF