1. Symbiotic Firmicutes establish mutualism with the host via innate tolerance and resistance to control systemic immunity.
- Author
-
Jordan CKI, Brown RL, Larkinson MLY, Sequeira RP, Edwards AM, and Clarke TB
- Subjects
- Humans, Symbiosis, Immune Tolerance, Cytokines, Interleukins, Immunity, Innate, Firmicutes, Microbiota
- Abstract
The intestinal microbiota regulates immunity across organ systems. Which symbionts control systemic immunity, the mechanisms they use, and how they avoid widespread inflammatory damage are unclear. We uncover host tolerance and resistance mechanisms that allow Firmicutes from the human microbiota to control systemic immunity without inducing immunopathology. Intestinal processing releases Firmicute glycoconjugates that disseminate, resulting in release of cytokine IL-34 that stimulates macrophages and enhances defenses against pneumonia, sepsis, and meningitis. Despite systemic penetration of Firmicutes, immune homeostasis is maintained through feedback control whereby IL-34-mediated mTORC1 activation in macrophages clears polymeric glycoconjugates from peripheral tissues. Smaller glycoconjugates evading this clearance mechanism are tolerated through sequestration by albumin, which acts as an inflammatory buffer constraining their immunological impact. Without these resistance and tolerance mechanisms, Firmicutes drive catastrophic organ damage and cachexia via IL-1β. This reveals how Firmicutes are safely assimilated into systemic immunity to protect against infection without threatening host viability., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF