Maria Carlota Dao, Nataliya Sokolovska, Rémi Brazeilles, Séverine Affeldt, Véronique Pelloux, Edi Prifti, Julien Chilloux, Eric O. Verger, Brandon D. Kayser, Judith Aron-Wisnewsky, Farid Ichou, Estelle Pujos-Guillot, Lesley Hoyles, Catherine Juste, Joël Doré, Marc-Emmanuel Dumas, Salwa W. Rizkalla, Bridget A. Holmes, Jean-Daniel Zucker, Karine Clément, The MICRO-Obes Consortium, Aurélie Cotillard, Sean P. Kennedy, Nicolas Pons, Emmanuelle Le Chatelier, Mathieu Almeida, Benoit Quinquis, Nathalie Galleron, Jean-Michel Batto, Pierre Renault, Stanislav Dusko Ehrlich, Hervé Blottière, Marion Leclerc, Tomas de Wouters, Patricia Lepage, Gestionnaire, Hal Sorbonne Université, Instituts Hospitalo-Universitaires - Institut de Cardiologie-Métabolisme-Nutrition - - ICAN2010 - ANR-10-IAHU-0005 - IAHU - VALID, Génomique microbienne - Microbiome intestinal humain dans l'obésité et la transition nutritionnelle – initiative Franco-Chinoise - - MICRO-Obes2007 - ANR-07-GMGE-0002 - GMGE - VALID, Metagenomics in Cardiometabolic Diseases - METACARDIS - - EC:FP7:HEALTH2012-11-01 - 2017-10-31 - 305312 - VALID, Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut de Cardiométabolisme et Nutrition = Institute of Cardiometabolism and Nutrition [CHU Pitié Salpêtrière] (IHU ICAN), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Nutrition et obésités: approches systémiques (UMR-S 1269) (Nutriomics), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Danone Nutricia Research [Palaiseau, France], Centre Daniel Carasso [Palaiseau, France], Unité de modélisation mathématique et informatique des systèmes complexes [Bondy] (UMMISCO), Université de Yaoundé I-Institut de la francophonie pour l'informatique-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cadi Ayyad [Marrakech] (UCA)-Sorbonne Université (SU)-Institut de Recherche pour le Développement (IRD [France-Nord]), Imperial College London, Service de Nutrition [CHU Pitié-Salpétrière], Institut E3M [CHU Pitié-Salpêtrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Nottingham Trent University, MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, AgroParisTech, This work was supported by Agence Nationale de la Recherche (ANR MICRO-Obes and ANR-10-IAHU-05) and the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 (METACARDIS) and Fondation Leducq (to KC’s team). The clinical work received support from KOT-Ceprodi, Danone Nutricia Research and the Foundation Coeur et Artère. LH was in receipt of an MRC Intermediate Research Fellowship in Data Science (Grant No. MR/L01632X/1) and Heart and Stroke Foundation of Canada., MICRO-Obes Consortium : Aurélie Cotillard, Sean P. Kennedy, Nicolas Pons, Emmanuelle Le Chatelier, Mathieu Almeida, Benoit Quinquis, Nathalie Galleron, Jean-Michel Batto, Pierre Renault, Stanislav Dusko Ehrlich, Hervé Blottière, Marion Leclerc, Tomas de Wouters, Patricia Lepage., ANR-10-IAHU-0005,ICAN,Institut de Cardiologie-Métabolisme-Nutrition(2010), ANR-07-GMGE-0002,MICRO-Obes,Microbiome intestinal humain dans l'obésité et la transition nutritionnelle – initiative Franco-Chinoise(2007), European Project: 305312,EC:FP7:HEALTH,FP7-HEALTH-2012-INNOVATION-1,METACARDIS(2012), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU), Institut de la francophonie pour l'informatique-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Gaston Bergé (Saint-Louis, Sénégal)-Universtié Yaoundé 1 [Cameroun]-Université Cadi Ayyad [Marrakech] (UCA)-Sorbonne Université (SU)-Institut de Recherche pour le Développement (IRD [France-Nord]), Service de nutrition [CHU Pitié-Salpétrière], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Pitié-Salpêtrière [APHP], Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), ANR-10-IAHU-0005/10-IAHU-0005,ICAN,ICAN(2010), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Institut de Recherche pour le Développement (IRD [France-Nord])-Institut de la francophonie pour l'informatique-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cadi Ayyad [Marrakech] (UCA)-Université de Yaoundé I-Sorbonne Université (SU), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP], Dao, M. C., and Clement, K.
Background: The mechanisms responsible for calorie restriction-induced improvement in insulin sensitivity have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing calorie restriction, and integration of big data.\ud \ud Materials and Methods: An integrative approach was applied to investigate associations between change in insulin sensitivity and factors from host, microbiota and lifestyle after a 6-week calorie restriction period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 – baseline) between insulin sensitivity markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics in serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks.\ud \ud Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species) and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 subcutaneous adipose tissue gene probes) most associated with insulin sensitivity were identified. Biological network reconstruction using SCS, highlighted links between changes in insulin sensitivity, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species. Linear regression analysis to model how changes of select variables over the calorie restriction period contribute to changes in insulin sensitivity, showed greatest contributions from gut metagenomic species and fiber intake.\ud \ud Conclusions: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to insulin sensitivity from the initial input, consisting of 9,986 variables.