1. Promoter Recognition and Activation by the Global Response Regulator CbrB in Pseudomonas aeruginosa
- Author
-
Dieter Haas, Han Ting Chou, Chung-Dar Lu, and Laetitia Abdou
- Subjects
DNA, Bacterial ,Integration Host Factors ,Transcriptional Activation ,DNA Mutational Analysis ,Catabolite repression ,Electrophoretic Mobility Shift Assay ,Biology ,Microbiology ,Bacterial Proteins ,Recognition sequence ,Gene Regulation ,Electrophoretic mobility shift assay ,Promoter Regions, Genetic ,Molecular Biology ,Transcription factor ,Palindromic sequence ,Genetics ,Binding Sites ,Nucleic acid sequence ,Promoter ,Gene Expression Regulation, Bacterial ,Lipase ,Response regulator ,Pseudomonas aeruginosa ,RNA Polymerase Sigma 54 ,Protein Binding ,Transcription Factors - Abstract
In Pseudomonas aeruginosa , the CbrA/CbrB two-component system is instrumental in the maintenance of the carbon-nitrogen balance and for growth on carbon sources that are energetically less favorable than the preferred dicarboxylate substrates. The CbrA/CbrB system drives the expression of the small RNA CrcZ, which antagonizes the repressing effects of the catabolite repression control protein Crc, an RNA-binding protein. Dicarboxylates appear to cause carbon catabolite repression by inhibiting the activity of the CbrA/CbrB system, resulting in reduced crcZ expression. Here we have identified a conserved palindromic nucleotide sequence that is present in upstream activating sequences (UASs) of promoters under positive control by CbrB and σ 54 RNA polymerase, especially in the UAS of the crcZ promoter. Evidence for recognition of this palindromic sequence by CbrB was obtained in vivo from mutational analysis of the crcZ promoter and in vitro from electrophoretic mobility shift assays using crcZ promoter fragments and purified CbrB protein truncated at the N terminus. Integration host factor (IHF) was required for crcZ expression. CbrB also activated the lipA (lipase) promoter, albeit less effectively, apparently by interacting with a similar but less conserved palindromic sequence in the UAS of lipA . As expected, succinate caused CbrB-dependent catabolite repression of the lipA promoter. Based on these results and previously published data, a consensus CbrB recognition sequence is proposed. This sequence has similarity to the consensus NtrC recognition sequence, which is relevant for nitrogen control.
- Published
- 2011
- Full Text
- View/download PDF