1. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist.
- Author
-
Parisi, Giulia, Saco, Justin D, Salazar, Felix B, Tsoi, Jennifer, Krystofinski, Paige, Puig-Saus, Cristina, Zhang, Ruixue, Zhou, Jing, Cheung-Lau, Gardenia C, Garcia, Alejandro J, Grasso, Catherine S, Tavaré, Richard, Hu-Lieskovan, Siwen, Mackay, Sean, Zalevsky, Jonathan, Bernatchez, Chantale, Diab, Adi, Wu, Anna M, Comin-Anduix, Begoña, Charych, Deborah, and Ribas, Antoni
- Subjects
T-Lymphocytes ,Animals ,Mice ,Inbred C57BL ,Humans ,Mice ,Melanoma ,Melanoma ,Experimental ,Polyethylene Glycols ,Receptors ,Interleukin-2 ,Interleukin-2 ,Adoptive Transfer ,Lymphocyte Activation ,Inbred C57BL ,Experimental ,Receptors - Abstract
Interleukin-2 (IL-2) is a component of most protocols of adoptive cell transfer (ACT) therapy for cancer, but is limited by short exposure and high toxicities. NKTR-214 is a kinetically-engineered IL-2 receptor βγ (IL-2Rβγ)-biased agonist consisting of IL-2 conjugated to multiple releasable polyethylene glycol chains resulting in sustained signaling through IL-2Rβγ. We report that ACT supported by NKTR-214 increases the proliferation, homing and persistence of anti-tumor T cells compared to ACT with IL-2, resulting in superior antitumor activity in a B16-F10 murine melanoma model. The use of NKTR-214 increases the number of polyfunctional T cells in murine spleens and tumors compared to IL-2, and enhances the polyfunctionality of T and NK cells in the peripheral blood of patients receiving NKTR-214 in a phase 1 trial. In conclusion, NKTR-214 may have the potential to improve the antitumor activity of ACT in humans through increased in vivo expansion and polyfunctionality of the adoptively transferred T cells.
- Published
- 2020