5 results on '"Gastine, T."'
Search Results
2. Gravity darkening in late-type stars I. The Coriolis effect.
- Author
-
Raynaud, R., Rieutord, M., Petitdemange, L., Gastine, T., and Putigny, B.
- Subjects
STELLAR rotation ,GRAVITY ,ASTRONOMICAL photometry ,CORIOLIS force ,HEAT transfer ,CIRCUMSTELLAR matter - Abstract
Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods. We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results. We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of the surface heat flux distribution. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. Direct numerical simulations of the ?-mechanism. I. Radial modes in the purely radiative case
- Author
-
Gastine, T., Dintrans, B., Laboratoire Astrophysique de Toulouse-Tarbes (LATT), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,instabilities ,hydrodynamics ,waves ,stars: oscillations ,methods: numerical - Abstract
15 pages, 15 figures, 1 table, accepted for publication in A&A; International audience; Context: We present a purely-radiative hydrodynamical model of the ?-mechanism that sustains radial oscillations in Cepheid variables. Aims: We determine the physical conditions favourable for the ?-mechanism to occur inside a layer, with a configurable conductivity-hollow. We complete nonlinear direct numerical simulations (DNS) that initiate from these most favourable conditions. Methods: We compare the results of a linear-stability analysis, applied to radial modes using a spectral solver, and a DNS, which is developed from a high-order finite difference code. Results: We find that by changing the location and shape of the hollow, we can generate well-defined instability strips. For a given position in the layer, the amplitude and width of the hollow appear to be key parameters to vary to attain unstable modes driven by the ?-mechanism. The DNS, starting from the favourable conditions, confirm both the growth rates and the structures of linearly-unstable modes. Nonlinear saturation is produced by intricate couplings between excited fundamental mode and higher damped overtones.
- Published
- 2008
4. Evolution of a magnetic field in a differentially rotating radiative zone.
- Author
-
Gaurat, M., Jouve, L., Lignières, F., and Gastine, T.
- Subjects
STELLAR rotation ,STELLAR magnetic fields ,STELLAR radiation ,SIRIUS (Star) ,ASTROPHYSICAL spectropolarimetry ,POLOIDAL magnetic fields - Abstract
Context. Recent spectropolarimetric surveys of main-sequence intermediate-mass stars have exhibited a dichotomy in the distribution of the observed magnetic field between the kG dipoles of Ap/Bp stars and the sub-Gauss magnetism of Vega and Sirius. Aims. We would like to test whether this dichotomy is linked to the stability versus instability of large-scale magnetic configurations in differentially rotating radiative zones. Methods. We computed the axisymmetric magnetic field obtained from the evolution of a dipolar field threading a differentially rotating shell. A full parameter study including various density profiles and initial and boundary conditions was performed with a 2D numerical code. We then focused on the ratio between the toroidal and poloidal components of the magnetic field and discuss the stability of the configurations dominated by the toroidal component using local stability criteria and insights from recent 3D numerical simulations. Results. The numerical results and a simple model show that the ratio between the toroidal and the poloidal magnetic fields is highest after an Alfvén crossing time of the initial poloidal field. For high density contrasts, this ratio converges towards an asymptotic value that can thus be extrapolated to realistic stellar cases. We then consider the stability of the magnetic configurations to nonaxisymmetric perturbations and find that configurations dominated by the toroidal component are likely to be unstable if the shear strength is significantly higher than the poloidal Alfvén frequency. An expression for the critical poloidal field below which magnetic fields are likely to be unstable is found and is compared to the lower bound of Ap/Bp magnetic fields. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
5. Bridging planets and stars using scaling laws in anelastic spherical shell dynamos.
- Author
-
Yadav, R. K., Gastine, T., Christensen, U. R., Duarte, L., Petit, Pascal, Jardine, Moira, and Spruit, Hendrik C.
- Abstract
Dynamos operating in the interiors of rapidly rotating planets and low-mass stars might belong to a similar category where rotation plays a vital role. We quantify this similarity using scaling laws. We analyse direct numerical simulations of Boussinesq and anelastic spherical shell dynamos. These dynamos represent simplified models which span from Earth-like planets to rapidly rotating low-mass stars. We find that magnetic field and velocity in these dynamos are related to the available buoyancy power via a simple power law which holds over wide variety of control parameters. [ABSTRACT FROM PUBLISHER]
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.