6 results on '"Van Weele, M"'
Search Results
2. Can we explain the observed methane variability after the Mount Pinatubo eruption?
- Author
-
Bândă, N., Krol, M., van Weele, M., van Noije, T., Le Sager, P., and Röckmann, T.
- Subjects
METHANE ,TROPOSPHERE ,PHOTOLYSIS (Chemistry) ,ULTRAVIOLET radiation ,EMISSIONS (Air pollution) ,MOUNT Pinatubo Eruption, 1991 - Abstract
The CH
4 growth rate in the atmosphere showed large variations after the Pinatubo eruption in June 1991. A decrease of more than 10 ppb yr-1 in the growth rate over the course of 1992 was reported, and a partial recovery in the following year. Although several reasons have been proposed to explain the evolution of CH4 after the eruption, their contributions to the observed variations are not yet resolved. CH4 is removed from the atmosphere by the reaction with tropospheric OH, which in turn is produced by O3 photolysis under UV radiation. The CH4 removal after the Pinatubo eruption might have been affected by changes in tropospheric UV levels due to the presence of stratospheric SO2 and sulfate aerosols, and due to enhanced ozone depletion on Pinatubo aerosols. The perturbed climate after the eruption also altered both sources and sinks of atmospheric CH4 . Furthermore, CH4 concentrations were influenced by other factors of natural variability in that period, such as El Niño-Southern Oscillation (ENSO) and biomass burning events. Emissions of CO, NOX and non-methane volatile organic compounds (NMVOCs) also affected CH4 concentrations indirectly by influencing tropospheric OH levels. Potential drivers of CH4 variability are investigated using the TM5 global chemistry model. The contribution that each driver had to the global CH4 variability during the period 1990 to 1995 is quantified. We find that a decrease of 8- 10 ppb yr-1 CH4 is explained by a combination of the above processes. However, the timing of the minimum growth rate is found 6-9 months later than observed. The long-term decrease in CH4 growth rate over the period 1990 to 1995 is well captured and can be attributed to an increase in OH concentrations over this time period. Potential uncertainties in our modelled CH4 growth rate include emissions of CH4 from wetlands, biomass burning emissions of CH4 and other compounds, biogenic NMVOC and the sensitivity of OH to NMVOC emission changes. Two inventories are used for CH4 emissions from wetlands, ORCHIDEE and LPJ, to investigate the role of uncertainties in these emissions. Although the higher climate sensitivity of ORCHIDEE improves the simulated CH4 growth rate change after Pinatubo, none of the two inventories properly captures the observed CH4 variability in this period. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
3. Constraining global methane emissions and uptake by ecosystems.
- Author
-
Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.
- Subjects
METHANE ,EMISSIONS (Air pollution) ,BIOTIC communities ,SOIL moisture ,SOIL fertility ,SOIL mineralogy ,CLIMATE change - Abstract
Natural methane (CH
4 ) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°-90° N), naturally inundated wetlands (60° S-45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003-2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we adapt model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990-2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr-1 , not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr-1 over 2005-2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years. [ABSTRACT FROM AUTHOR]- Published
- 2011
- Full Text
- View/download PDF
4. Glacial wetland distribution and methane emissions estimated from PMIP2 climate simulations.
- Author
-
Weber, S.L., Drury, A.J., Toonen, W.H.J., and van Weele, M.
- Subjects
GLACIAL climates ,WETLANDS ,EMISSIONS (Air pollution) ,METHANE ,SIMULATION methods & models ,ICE sheets ,PALEOCLIMATOLOGY ,LAST Glacial Maximum ,MOISTURE - Abstract
The interglacial-glacial decrease in atmospheric methane concentration is often attributed to a strong decline in the wetland source. This seems consistent with the extreme coldness and vastly expanded ice sheets. Here we analyse coupled model simulations for the last glacial maximum from the Paleoclimate Modelling Intercomparison Project, using simple relations to estimate wetland characteristics from the simulated climate and vegetation. It is found that boreal wetlands shift southward in all simulations, which is instrumental in maintaining the boreal wetland source at a significant level. The mean emission temperature over boreal wetlands drops by only a few degrees, despite the strong overall cooling. The temperature effect on the glacial decline in the methane flux is therefore moderate, while reduced plant productivity contributes equally to the total reduction. Moisture effects play a role on the local scale only, while averaging out globally. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
5. The Global Methane Budget: 2000–2017
- Author
-
M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhuang, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), CSIRO Marine and Atmospheric Research [Aspendale], Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), NASA Goddard Space Flight Center (GSFC), Department of Earth System Science [Stanford] (ESS), Stanford EARTH, Stanford University-Stanford University, Yale School of the Environment (YSE), NOAA/University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, SRON Netherlands Institute for Space Research (SRON), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), ICOS-ATC (ICOS-ATC), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Department of Thematic Studies – Technology and Social Change, Linköping University (LIU), European Commission - Joint Research Centre [Ispra] (JRC), Department of Chemistry [Irvine], University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), National Institute of Water and Atmospheric Research [Wellington] (NIWA), New York University [New York] (NYU), NYU System (NYU), Università degli studi della Campania 'Luigi Vanvitelli' = University of the Study of Campania Luigi Vanvitelli, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Bolin Centre for Climate Research, Stockholm University, Skidmore College [Saratoga Springs], Pacific Climate Impacts Consortium, University of Victoria [Canada] (UVIC), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Roma (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], University of Reading (UOR), International Institute for Applied Systems Analysis [Laxenburg] (IIASA), National Institute for Environmental Studies (NIES), Oeschger Centre for Climate Change Research (OCCR), University of Bern, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC, Australia, Département de Physique [Bruxelles] (ULB), Faculté des Sciences [Bruxelles] (ULB), Université libre de Bruxelles (ULB)-Université libre de Bruxelles (ULB), Purdue Climate Change Research Center, Purdue University [West Lafayette], European Centre for Medium-Range Weather Forecasts (ECMWF), Lund University [Lund], Climate Research Division [Toronto], School of Geographical Sciences [Bristol], University of Bristol [Bristol], NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), School of Chemistry [Bristol], NERC National Centre for Earth Observation (NCEO), Natural Environment Research Council (NERC), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University [Beijing], Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Observatoire de Paris, Université Paris sciences et lettres (PSL), Massachusetts Institute of Technology (MIT), ICOS-RAMCES (ICOS-RAMCES), Université libre de Bruxelles (ULB), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Centre for Coastal Biogeochemistry Research, Southern Cross University (SCU), TNO Climate, Air and Sustainability [Utrecht], The Netherlands Organisation for Applied Scientific Research (TNO), International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn University, Joint Global Change Research Institute, Pacific Northwest National Laboratory (PNNL)-University of Maryland [College Park], University of Maryland System-University of Maryland System, CSIRO Oceans and Atmosphere, CISRO Oceans and Atmosphere, Department of Geological Sciences and Bolin Centre for Climate Research, FAO Forestry, Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO), Finnish Meteorological Institute (FMI), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Department of Chemistry [Imperial College London], Imperial College London, University of Rochester [USA], Royal Netherlands Meteorological Institute (KNMI), Vrije Universiteit Amsterdam [Amsterdam] (VU), Scripps Institution of Oceanography (SIO - UC San Diego), University of California [San Diego] (UC San Diego), University of Toronto, Department of Physical Geography and Ecosystem Science [Lund], Department of Geographical Sciences [College Park], University of Maryland [College Park], Hohai University, European Project: 725546,Metlake, European Project: 776810,H2020,H2020-SC5-2017-OneStageB,VERIFY(2018), European Project: 773421,H2020,H2020-BG-2017-1,NUNATARYUK(2017), Natural Environment Research Council [2006-2012], Earth Sciences, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Saunois, M., R. Stavert, A., Poulter, B., Bousquet, P., G. Canadell, J., B. Jackson, R., A. Raymond, P., J. Dlugokencky, E., Houweling, S., K. Patra, P., Ciais, P., K. Arora, V., Bastviken, D., Bergamaschi, P., R. Blake, D., Brailsford, G., Bruhwiler, L., M. Carlson, K., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., M. Crill, P., Covey, K., L. Curry, C., Etiope, G., Frankenberg, C., Gedney, N., I. Hegglin, M., Hoglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., M. Jensen, K., Joos, F., Kleinen, T., B. Krummel, P., L. Langenfelds, R., G. Laruelle, G., Liu, L., Machida, T., Maksyutov, S., C. McDonald, K., Mcnorton, J., A. Miller, P., R. Melton, J., Morino, I., Muller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., J. Parker, R., Peng, C., Peng, S., P. Peters, G., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., J. Riley, W., A. Rosentreter, J., Segers, A., J. Simpson, I., Shi, H., J. Smith, S., Paul Steele, L., F. Thornton, B., Tian, H., Tohjima, Y., N. Tubiello, F., Tsuruta, A., Viovy, N., Voulgarakis, A., S. Weber, T., Van Weele, M., R. Van Der Werf, G., F. Weiss, R., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., and Zhuang, Q.
- Subjects
Naturgeografi ,010504 meteorology & atmospheric sciences ,TRACE GASES ,ATMOSPHERIC METHANE ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,7. Clean energy ,Methane ,chemistry.chemical_compound ,CARBON-DIOXIDE ,SDG 13 - Climate Action ,Meteorology & Atmospheric Sciences ,Climate change ,CH4 EMISSIONS ,Geosciences, Multidisciplinary ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,0303 health sciences ,GREENHOUSE-GAS EMISSIONS ,Atmospheric methane ,lcsh:QE1-996.5 ,Géochimie ,Geology ,methane, global warming, climate change, greenhouse gases ,Carbon project ,Atmospheric chemistry ,Physical Sciences ,0406 Physical Geography and Environmental Geoscience ,BIOMASS BURNING EMISSIONS ,NATURAL-GAS ,PROCESS-BASED MODEL ,530 Physics ,03 medical and health sciences ,SDG 17 - Partnerships for the Goals ,Global Carbon Project ,0402 Geochemistry ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,030304 developmental biology ,0105 earth and related environmental sciences ,Science & Technology ,Radiative forcing ,15. Life on land ,Trace gas ,lcsh:Geology ,chemistry ,TM 4D-VAR V1.0 ,Physical Geography ,13. Climate action ,Greenhouse gas ,GOSAT SWIR XCO2 ,General Earth and Planetary Sciences ,Environmental science ,Global methane (CH4) budget ,0401 Atmospheric Sciences - Abstract
Understanding and quantifying the global methane (CH4) budgetis important for assessing realistic pathways to mitigate climate change.Atmospheric emissions and concentrations of CH4 continue to increase,making CH4 the second most important human-influenced greenhouse gas interms of climate forcing, after carbon dioxide (CO2). The relativeimportance of CH4 compared to CO2 depends on its shorteratmospheric lifetime, stronger warming potential, and variations inatmospheric growth rate over the past decade, the causes of which are stilldebated. Two major challenges in reducing uncertainties in the atmosphericgrowth rate arise from the variety of geographically overlapping CH4sources and from the destruction of CH4 by short-lived hydroxylradicals (OH). To address these challenges, we have established aconsortium of multidisciplinary scientists under the umbrella of the GlobalCarbon Project to synthesize and stimulate new research aimed at improvingand regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paperdedicated to the decadal methane budget, integrating results of top-downstudies (atmospheric observations within an atmospheric inverse-modellingframework) and bottom-up estimates (including process-based models forestimating land surface emissions and atmospheric chemistry, inventories ofanthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated byatmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximumestimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or∼ 60 % is attributed to anthropogenic sources, that isemissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009),and 24 Tg CH4 yr−1 larger than the one reported in the previousbudget for 2003–2012 (Saunois et al. 2016). Since 2012, global CH4emissions have been tracking the warmest scenarios assessed by theIntergovernmental Panel on Climate Change. Bottom-up methods suggest almost30 % larger global emissions (737 Tg CH4 yr−1, range 594–881)than top-down inversion methods. Indeed, bottom-up estimates for naturalsources such as natural wetlands, other inland water systems, and geologicalsources are higher than top-down estimates. The atmospheric constraints onthe top-down budget suggest that at least some of these bottom-up emissionsare overestimated. The latitudinal distribution of atmosphericobservation-based emissions indicates a predominance of tropical emissions(∼ 65 % of the global budget, info:eu-repo/semantics/published
- Published
- 2020
- Full Text
- View/download PDF
6. Three decades of global methane sources and sinks
- Author
-
Marielle Saunois, Martina Schmidt, Frédéric Chevallier, Vaishali Naik, Lori Bruhwiler, Simona Castaldi, Jean-Francois Lamarque, Apostolos Voulgarakis, Philippe Bousquet, Edward J. Dlugokencky, Paul I. Palmer, Sander Houweling, Kengo Sudo, Béatrice Josse, Ray L. Langenfelds, Philippe Ciais, Michiel van Weele, Renato Spahni, Sarah A. Strode, Peter Bergamaschi, Liang Feng, Guido R. van der Werf, L. Paul Steele, Isabelle Pison, Philip Cameron-Smith, Paul J. Fraser, Monia Santini, Ray F. Weiss, Daniel Bergmann, Paul B. Krummel, Isobel J. Simpson, Martin Heimann, Simon O'Doherty, Josep G. Canadell, Annemarie Fraser, Donald R. Blake, Benjamin Poulter, Ronald G. Prinn, Matthew Rigby, J. E. Williams, David A. Plummer, Elke L. Hodson, Corinne Le Quéré, Guang Zeng, S. Kirschke, Drew Shindell, Sophie Szopa, Bruno Ringeval, Earth and Climate, Amsterdam Global Change Institute, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Global Carbon Project, CSIRO Marine and Atmospheric Research, National Oceanic and Atmospheric Administration (NOAA), JRC Institute for Environment and Sustainability (IES), European Commission - Joint Research Centre [Ispra] (JRC), Lawrence Livermore National Laboratory (LLNL), University of California [Irvine] (UCI), University of California, University of Naples Federico II, Euro–Mediterranean Center for Climate Change, School of GeoSciences, University of Edinburgh, Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, SRON Netherlands Institute for Space Research (SRON), Utrecht University [Utrecht], Météo France, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), National Center for Atmospheric Research [Boulder] (NCAR), Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), University Corporation for Atmospheric Research (UCAR), University of Bristol [Bristol], ICOS-RAMCES (ICOS-RAMCES), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Massachusetts Institute of Technology (MIT), VU University Amsterdam, NASA Goddard Space Flight Center (GSFC), Universität Bern- University of Bern [Bern], Partenaires INRAE, Universities Space Research Association (USRA), Graduate School of Environmental Studies [Nagoya], Nagoya University, Modélisation du climat (CLIM), Faculty of Earth and Life Sciences, Imperial College London, Royal Netherlands Meteorological Institute (KNMI), Scripps Institution of Oceanography (SIO), University of California [San Diego] (UC San Diego), University of California-University of California, National Institute of Water and Atmospheric Research [Wellington] (NIWA), Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J., Dlugokencky, E., Bergamaschi, P., Bergmann, D., Blake, D., Bruhwiler, L., Cameron Smith, P., Castaldi, Simona, Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E., Houweling, S., Josse, B., Fraser, P., Krummel, P., Lamarque, J. F., Lagenfelds, R., Le Quéré, C., Naik, V., O'Doherty, S. J., Palmer, P., Pison, I., Plummer, D., Poulter, B., Prinn, R., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Schindell, D., Simpson, I., Spahni, R., Steele, P., Strode, S., Sudo, K., Szopa, S., Van der Werf, G., Voulgarakis, A., van Weele, M., Weiss, R., Williams, J., Zeng, G., Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of California [Irvine] (UC Irvine), University of California (UC), University of Naples Federico II = Università degli studi di Napoli Federico II, Météo-France Direction Interrégionale Sud-Est (DIRSE), Météo-France, Vrije Universiteit Amsterdam [Amsterdam] (VU), Scripps Institution of Oceanography (SIO - UC San Diego), University of California (UC)-University of California (UC), This work was supported by: the UK NERC National Centre for Earth Observation, the European Commission's 7th Framework Programme (FP7/2007-2013) projects MACC (grant agreement no. 218793) and GEOCARBON (grant agreement no. 283080), contract DE-AC52-07NA27344 with different parts supported by the US DOE IMPACTS and SciDAC Climate Consortium projects, computing resources of NERSC, which is supported by the US DOE under contract DE-AC02-05CH11231, NOAA flask data for CH3CCl3 (made available by S. Montzka), the Australian Climate Change Science Program, and ERC grant 247349. Simulations from LSCE were performed using HPC resources from DSM-CCRT and CCRT/CINES/IDRIS under the allocation 2012-t2012012201 made by GENCI (Grand Equipement National de Calcul Intensif)., and Vrije universiteit = Free university of Amsterdam [Amsterdam] (VU)
- Subjects
010504 meteorology & atmospheric sciences ,[SDV]Life Sciences [q-bio] ,010501 environmental sciences ,Atmospheric sciences ,7. Clean energy ,01 natural sciences ,Methane ,chemistry.chemical_compound ,SDG 13 - Climate Action ,Greenhouse effect ,0105 earth and related environmental sciences ,business.industry ,Atmospheric methane ,Fossil fuel ,15. Life on land ,chemistry ,13. Climate action ,Greenhouse gas ,Atmospheric chemistry ,Climatology ,Carbon dioxide ,General Earth and Planetary Sciences ,business ,Wetland methane emissions - Abstract
Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. © 2013 Macmillan Publishers Limited.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.