1. p32/OPA1 axis-mediated mitochondrial dynamics contributes to cisplatin resistance in non-small cell lung cancer.
- Author
-
Yu CX, Peng ZQ, Wang T, Qu XH, Yang P, Huang SR, Jiang LP, Tou FF, and Han XJ
- Subjects
- Humans, Cisplatin pharmacology, Cisplatin therapeutic use, Mitochondrial Dynamics, Drug Resistance, Neoplasm, Cell Line, Tumor, Apoptosis, A549 Cells, Proteins, Adenosine Triphosphate, Cell Proliferation, GTP Phosphohydrolases genetics, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung genetics, Carcinoma, Non-Small-Cell Lung metabolism, Lung Neoplasms drug therapy, Lung Neoplasms genetics, Lung Neoplasms metabolism, Metformin pharmacology, Antineoplastic Agents pharmacology, Antineoplastic Agents therapeutic use
- Abstract
Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.
- Published
- 2024
- Full Text
- View/download PDF