14 results on '"Alados-Arboledas, L"'
Search Results
2. Local-Scale Variability of Solar Radiation in a Mountainous Region
- Author
-
Tovar, J., Olmo, F. J., and Alados-Arboledas, L.
- Published
- 1995
3. Columnar aerosol properties from sun-and-star photometry: statistical comparisons and day-to-night dynamic.
- Author
-
Pérez.-Ramírez, D., Lyamani, H., Olmo, F. J., Whiteman, D. N., and Alados.-Arboledas, L.
- Subjects
ASTRONOMICAL photometry ,ATMOSPHERIC aerosols ,ASTRONOMICAL observations ,AIR pollution ,STANDARD deviations ,METEOROLOGY - Abstract
This work presents the first analysis of long-term correlative day-to-night columnar aerosol optical properties. The aim is to better understand columnar aerosol dynamic from ground-based observations, which are poorly studied until now. To this end we have used a combination of sun-and-star photometry measurements acquired in the city of Granada (37.16° N, 3.60°W, 680ma.s.l.; South-East of Spain) from 2007 to 2010. For the whole study period, mean aerosol optical depth (AOD) around 440 nm (±standard deviation) is 0.18 ± 0.10 and 0.19 ± 0.11 for daytime and nighttime, respectively, while the mean Angström exponent (α) is 1.0 ± 0.4 and 0.9 ± 0.4 for daytime and nighttime. The ANOVA statistical tests reveal that there are no significant differences between AOD and α obtained at daytime and those at nighttime. Additionally, the mean daytime values of AOD and α obtained during this study period are coherent with the values obtained in the surrounding AERONET stations. On the other hand, AOD around 440 nm present evident seasonal patterns characterized by large values in summer (mean value of 0.20 ± 0.10 both at daytime and nighttime) and low values in winter (mean value of 0.15 ± 0.09 at daytime and 0.17 ± 0.10 at nighttime). The Angström exponents also present seasonal patterns, but with low values in summer (mean values of 0.8 ± 0.4 and 0.9 ± 0.4 at dayand night-time) and relatively large values in winter (mean values of 1.2 ± 0.4 and 1.0 ± 0.3 at daytime and nighttime). These seasonal patterns are explained by the differences in the meteorological conditions and by the differences in the strength of the aerosol sources. To take more insight about the changes in aerosol particles between day and night, the spectral differences of the Angström exponent as function of the Angström exponent are also studied. These analyses reveal increases of the fine mode radius and of the fine mode contribution to AOD during nighttime, being more remarkable in the summer seasons. These variations are explained by the changes of the local aerosol sources and by the meteorological conditions between daytime and nighttime, as well as aerosol aging processes. Case studies during summer and winter for different aerosol loads and types are also presented to clearly illustrate these findings. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
4. Performance reduction of solar irradiance parametric models due to limitations in required aerosol data: case of the CPCR2 model.
- Author
-
Olmo, F. J., Vida, J., Foyo-Moreno, I., Tovar, J., and Alados-Arboledas, L.
- Subjects
IRRADIATION ,SUN ,PHOTOMETRY ,MODELS & modelmaking ,METEOROLOGY ,AEROSOLS - Abstract
Summary Knowledge of the partition of global solar irradiance in its diffuse and direct beam components is required in different areas of applied meteorology. In the absence of solar irradiance measurements parametric approaches have to be used instead. In the present work, the parametric CPCR2 model has been analysed at Granada (37.18° N, 3.58° W, 660 m a.m.s.l), an inland location, covering a period greater than three years. Only cloudless conditions are analysed. Angström’s α and β coefficients have been computed from measurements carried out with a sunphotometer. As the study reveals, the best performance of the parametric model is conditioned to the availability of appropriate information on aerosols, especially when the interest is focused on the direct and diffuse irradiance. [ABSTRACT FROM AUTHOR]
- Published
- 2001
- Full Text
- View/download PDF
5. Day-night differences in the effective emissivity from clear skies
- Author
-
Alados-Arboledas, L. and Jimenez, J. I.
- Subjects
METEOROLOGY - Published
- 1988
- Full Text
- View/download PDF
6. Temporal and spatial variability of atmospheric particle number size distributions across Spain.
- Author
-
Alonso-Blanco, E., Gómez-Moreno, F.J., Artíñano, B., Iglesias-Samitier, S., Juncal-Bello, V., Piñeiro-Iglesias, M., López-Mahía, P., Pérez, N., Brines, M., Alastuey, A., Titos, G., García, M.I., Rodríguez, S., Sorribas, M., Águila, A. del, Lyamani, H., and Alados-Arboledas, L.
- Subjects
- *
ATMOSPHERIC aerosols , *GEOGRAPHY , *SEASONS , *METEOROLOGY , *AIR masses - Abstract
This study synthesizes for the first time results from simultaneous aerosol measurements performed at seven diverse locations distributed all over the Spanish geography. The observations were carried out during two field campaigns in 2012–2013, one-month each and during different seasons. These field campaigns were performed in the framework of the Spanish Network of DMAs (REDMAAS) activities. Measurement sites were grouped as polluted sites (urban background) and clean sites (rural background and high-altitude sites). Seasonal differences were more important at polluted sites, mainly related to meteorology and aerosol sources. Higher total particle concentrations were found during the cold period, driven mainly by Aitken-mode particles (traffic-related aerosol particles). In clean sites, particle concentrations were higher during the warm period. Mild meteorological conditions in combination with the absence of local sources during the cold period make atmospheric nucleation an important contributor to ultrafine particles. These results are reflected in aerosol dynamical processes. Ultrafine particle bursts were frequent in both periods at the clean sites and in the warm period at most polluted sites. Shrinkages processes were identified at three sites (two polluted and one clean site) during the warm period. Meteorology (wind speed and solar radiation) and a highly-volatile aerosol (formed from atmospheric nucleation or traffic emissions) explain this behaviour. Ultrafine particles exhibited a different behaviour at inland and coastal sites. The highest total particle concentrations were observed at coastal sites during the warm period. At these sites, the smallest particle modal diameters and the highest variations of particle number size distributions in the smaller particle size range were also found, particularly in the warm period. This may be the result of the high diffusion conditions and mixing of different air masses (clean and polluted) caused by sea-land breezes. Our findings can be explained by the local and regional characteristics of each site, such as meteorology and aerosol sources (types, proximity …) and the influence of meteorology on atmospheric transformation processes. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
7. A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications.
- Author
-
Sorribas, M., Adame, J.A., Olmo, F.J., Vilaplana, J.M., Gil-Ojeda, M., and Alados-Arboledas, L.
- Subjects
- *
SOLAR radiation , *COASTS , *METEOROLOGY , *GAS phase reactions , *CLIMATE change - Abstract
New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O 3 , SO 2 , CO and NO 2 ) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2 ± 4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2 ± 1.7 cm − 3 s − 1 , with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8 ± 2.4 nm h − 1 with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM 10 and condensation sink, showed a moderate or high connection with both formation and growth rates. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
8. A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
- Author
-
P. Laj, A. Bigi, C. Rose, E. Andrews, C. Lund Myhre, M. Collaud Coen, Y. Lin, A. Wiedensohler, M. Schulz, J. A. Ogren, M. Fiebig, J. Gliß, A. Mortier, M. Pandolfi, T. Petäja, S.-W. Kim, W. Aas, J.-P. Putaud, O. Mayol-Bracero, M. Keywood, L. Labrador, P. Aalto, E. Ahlberg, L. Alados Arboledas, A. Alastuey, M. Andrade, B. Artíñano, S. Ausmeel, T. Arsov, E. Asmi, J. Backman, U. Baltensperger, S. Bastian, O. Bath, J. P. Beukes, B. T. Brem, N. Bukowiecki, S. Conil, C. Couret, D. Day, W. Dayantolis, A. Degorska, K. Eleftheriadis, P. Fetfatzis, O. Favez, H. Flentje, M. I. Gini, A. Gregorič, M. Gysel-Beer, A. G. Hallar, J. Hand, A. Hoffer, C. Hueglin, R. K. Hooda, A. Hyvärinen, I. Kalapov, N. Kalivitis, A. Kasper-Giebl, J. E. Kim, G. Kouvarakis, I. Kranjc, R. Krejci, M. Kulmala, C. Labuschagne, H.-J. Lee, H. Lihavainen, N.-H. Lin, G. Löschau, K. Luoma, A. Marinoni, S. Martins Dos Santos, F. Meinhardt, M. Merkel, J.-M. Metzger, N. Mihalopoulos, N. A. Nguyen, J. Ondracek, N. Pérez, M. R. Perrone, J.-E. Petit, D. Picard, J.-M. Pichon, V. Pont, N. Prats, A. Prenni, F. Reisen, S. Romano, K. Sellegri, S. Sharma, G. Schauer, P. Sheridan, J. P. Sherman, M. Schütze, A. Schwerin, R. Sohmer, M. Sorribas, M. Steinbacher, J. Sun, G. Titos, B. Toczko, T. Tuch, P. Tulet, P. Tunved, V. Vakkari, F. Velarde, P. Velasquez, P. Villani, S. Vratolis, S.-H. Wang, K. Weinhold, R. Weller, M. Yela, J. Yus-Diez, V. Zdimal, P. Zieger, N. Zikova, INAR Physics, Institute for Atmospheric and Earth System Research (INAR), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE), Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Norwegian Institute for Air Research (NILU), Federal Office of Meteorology and Climatology MeteoSwiss, Leibniz Institute for Tropospheric Research (TROPOS), Norwegian Meteorological Institute [Oslo] (MET), Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), School of Earth and Environmental Sciences [Seoul] (SEES), Seoul National University [Seoul] (SNU), JRC Institute for Environment and Sustainability (IES), European Commission - Joint Research Centre [Ispra] (JRC), Universidad Mayor de San Andrés (UMSA), Centro de Investigaciones Energéticas Medioambientales y Tecnológicas [Madrid] (CIEMAT), Finnish Meteorological Institute (FMI), Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry [Paul Scherrer Institute] (LAC), Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), Iinstitute of Environmental Protection - National Research Institute (IOS-PIB), Environmental Radioactivity laboratory (ERL), Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety (INRASTES), National Center for Scientific Research 'Demokritos' (NCSR)-National Center for Scientific Research 'Demokritos' (NCSR), National Centre for Scientific Research Demokritos, Institut National de l'Environnement Industriel et des Risques (INERIS), Deutscher Wetterdienst [Offenbach] (DWD), Department of Computer Science and Engineering [Minneapolis], University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Arctic Space Centre [Helsinki], Bulgarian Academy of Sciences (BAS), University of Crete [Heraklion] (UOC), Institute for Chemical Technologies and Analytics, Vienna University of Technology (TU Wien), Environmental Chemical Processes Laboratory [Heraklion] (ECPL), Department of Chemistry [Heraklion], University of Crete [Heraklion] (UOC)-University of Crete [Heraklion] (UOC), Department of Environmental Science and Analytical Chemistry [Stockholm] (ACES), Stockholm University, South African Weather Service (SAWS), Department of Medicine [New York], Icahn School of Medicine at Mount Sinai [New York] (MSSM), Observatoire des Sciences de l'Univers de La Réunion (OSU-Réunion), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR), Institute for Environmental Research and Sustainable Development (IERSD), National Observatory of Athens (NOA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie Atmosphérique Expérimentale (CAE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), NERC National Centre for Earth Observation (NCEO), Natural Environment Research Council (NERC), Laboratoire de l'Atmosphère et des Cyclones (LACy), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institute for Applied Environmental Research [Stockholm], Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Instituto Nacional de Técnica Aeroespacial (INTA), European Project: 654109,H2020,H2020-INFRAIA-2014-2015,ACTRIS-2(2015), 10092390 - Beukes, Johan Paul, European Commission, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), CNR - National Research Council of Italy, University of Helsinki, Università degli Studi di Modena e Reggio Emilia, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France, Laj, P., Bigi, A., Rose, C., Andrews, E., Lund Myhre, C., Collaud Coen, M., Lin, Y., Wiedensohler, A., Schulz, M., A. Ogren, J., Fiebig, M., Gliss, J., Mortier, A., Pandolfi, M., Petaja, T., Kim, S. -W., Aas, W., Putaud, J. -P., Mayol-Bracero, O., Keywood, M., Labrador, L., Aalto, P., Ahlberg, E., Alados Arboledas, L., Alastuey, A., Andrade, M., Artinano, B., Ausmeel, S., Arsov, T., Asmi, E., Backman, J., Baltensperger, U., Bastian, S., Bath, O., Paul Beukes, J., T. Brem, B., Bukowiecki, N., Conil, S., Couret, C., Day, D., Dayantolis, W., Degorska, A., Eleftheriadis, K., Fetfatzis, P., Favez, O., Flentje, H., I. Gini, M., Gregoric, A., Gysel-Beer, M., Gannet Hallar, A., Hand, J., Hoffer, A., Hueglin, C., K. Hooda, R., Hyvarinen, A., Kalapov, I., Kalivitis, N., Kasper-Giebl, A., Eun Kim, J., Kouvarakis, G., Kranjc, I., Krejci, R., Kulmala, M., Labuschagne, C., Lee, H. -J., Lihavainen, H., Lin, N. -H., Loschau, G., Luoma, K., Marinoni, A., Martins Dos Santos, S., Meinhardt, F., Merkel, M., Metzger, J. -M., Mihalopoulos, N., Anh Nguyen, N., Ondracek, J., Perez, N., Rita Perrone, M., Pichon, J. -M., Picard, D., Pont, V., Prats, N., Prenni, A., Reisen, F., Romano, S., Sellegri, K., Sharma, S., Schauer, G., Sheridan, P., Patrick Sherman, J., Schutze, M., Schwerin, A., Sohmer, R., Sorribas, M., Steinbacher, M., Sun, J., Titos, G., Toczko, B., Tuch, T., Tulet, P., Tunved, P., Vakkari, V., Velarde, F., Velasquez, P., Villani, P., Vratolis, S., Wang, S. -H., Weinhold, K., Weller, R., Yela, M., Yus-Diez, J., Zdimal, V., Zieger, P., and Zikova, N.
- Subjects
Earth's energy budget ,1171 Geosciences ,Atmospheric Science ,Eearth radiation balance ,PARTICLE NUMBER ,010504 meteorology & atmospheric sciences ,Particle number ,Meteorology ,VISIBLE-LIGHT ABSORPTION ,010501 environmental sciences ,01 natural sciences ,Atmosphere ,PARTICULATE MATTER ,Solar radiation ,Cloud condensation nuclei ,lcsh:TA170-171 ,ORGANIC AEROSOL ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,SIZE DISTRIBUTIONS ,lcsh:TA715-787 ,Global Atmosphere Watch ,REGIONAL BACKGROUND SITES ,lcsh:Earthwork. Foundations ,Aerosol particles ,OPTICAL-PROPERTIES ,Albedo ,Particulates ,RADIATIVE PROPERTIES ,Aerosol ,lcsh:Environmental engineering ,13. Climate action ,Greenhouse gas ,FILTER-BASED MEASUREMENTS ,BLACK CARBON ,Environmental science ,Trollobservatoriet ,Global Climate Monitoring System - Abstract
Aerosol particles are essential constituents of the Earth’s atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system., European Commission Joint Research Centre 654109, European ERDF funds through different Spanish R&D projects of the Spanish Ministerio de Economia, Industria y Competitividad, NorthWest University, University of Helsinki, Academy of Finland 272041, Academy of Finland project Greenhouse gas 269095 296302, Korea Meteorological Administration Research and Development Program "Development of Monitoring and Analysis Techniques for Atmospheric Composition in Korea KMA2018-00522, National Research Foundation of Korea 2017R1D1A1B06032548, Korea Meteorological Administration Research and Development Program KMI2018-01111, Taiwan Environmental Protection Administration, Ministry of Research, France, French Ministry of the Environment, United States Environmental Protection Agency, MeteoSwiss (GAW-CH aerosol monitoring programme), Swiss State Secretariat for Education, Research and Innovation (SERI), Ministry of Education, Youth and Sports of CR within National Sustainability Program I (NPU I) LO1415, ERDF "ACTRISCZ RI" CZ.02.1.01/0.0/0.0/16_013/0001315 CGL2017-85344-R MINECO/AEI/FEDER, TIGAS-CM (Madrid Regional Government) Y2018/EMT-5177, AIRTECCM (Madrid Regional Government) P2018/EMT4329 REDMAAS2020 RED2018-102594-T CIENCIA, Spanish Ministry of Economy, Industry and Competitiveness, European Union (EU) CGL2016-78594-R, Generalitat de Catalunya AGAUR 2017 SGR41, National Institute for Aerospace Technology, Ministerio Espanol de Economia, Industria y Competitividad (MINECO) MIS 5021516, Competitiveness, Entrepreneurship and Innovation, NSRF, Ministry of Education, Universities and Research (MIUR), Norwegian Environment Agency, Swedish FORMAS; Swedish Research Council (VR), Magnus Bergvall foundation, Marta och Erik Holmberg foundation, Swedish EPA
- Published
- 2020
- Full Text
- View/download PDF
9. Black carbon aerosols over an urban area in south-eastern Spain: Changes detected after the 2008 economic crisis
- Author
-
Lyamani, H., Olmo, F.J., Foyo, I., and Alados-Arboledas, L.
- Subjects
- *
AEROSOLS , *CARBON , *CITIES & towns , *GLOBAL Financial Crisis, 2008-2009 , *ABSORPTION , *METEOROLOGY , *EMISSIONS (Air pollution) , *PARTICLES - Abstract
Abstract: Continuous measurements of black carbon (BC) concentrations performed at Granada, an urban location in southeast Spain, using a Multi-Angle Absorption Photometer from December 2005 to November 2008, are analysed and discussed here. The daily mean BC concentrations showed considerable day-to-day variations and were found to vary from low values of 0.5 μg m−3 to high values of 8.6 μg m−3, with overall mean and standard deviation of 3.0 ± 1.5 μg m−3. The annual mean BC concentrations were similar during 2006 and 2007 (3.2 ± 1.4 μg m−3 and 3.1 ± 1.6 μg m−3, respectively), but decreased by about 16–18% to 2.6 ± 1.4 μg m−3 in 2008. This reduction is not only observed in the mean value, but also in the median, third and first quartiles. A Mann–Whitney test at 0.05 significance level confirms that the BC concentration difference between 2006 and 2007 is statistically no significant while the BC concentration in 2008 tends to be less than that in 2006–2007. Analysis of meteorological conditions suggested that although the day-to-day variations in BC concentrations were driven mostly by meteorology, the reduction in the use of fossil fuels due to economic slowdown contributed significantly to the observed decrease in BC concentrations in 2008. Under conditions dominated by local source emissions, the effect of the economic crisis on BC concentration was more pronounced. For the three analysed years, BC concentrations obtained during winter were higher than those measured during summer, probably due to increased emissions from domestic heating and less intense vertical mixing in winter season, which lead to the confinement of the BC particles near the surface. The monthly mean BC concentrations were lower in 2008 than in 2006–2007 for almost every month of the year. In all years BC concentrations exhibited a clear diurnal pattern, with two maxima and two minima within a day. There were no differences among the daily patterns for 2006, 2007 and 2008 except for a general reduction in BC concentrations on 2008, especially during morning and evening traffic hours. For every day of the week, BC concentrations were lower on 2008 than in 2006 and 2007 and this reduction was more pronounced on working days, when BC concentrations were high. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
10. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology.
- Author
-
Cariñanos, P., Guerrero-Rascado, J.L., Valle, A.M., Cazorla, A., Titos, G., Foyo-Moreno, I., Alados-Arboledas, L., and Díaz de la Guardia, C.
- Subjects
- *
POLLEN , *METEOROLOGY , *HUMIDITY , *RANK correlation (Statistics) , *CLIMATE change - Abstract
The presence of very high pollen levels in the atmosphere is associated with a strong impact on health and a worsening of symptoms in people who already have a respiratory disease. However, there is no specification on the aerobiological, environmental and meteorological factors that allow for characterizing a pollen event as of great magnitude due to the significant impact it can cause on the population and the environment. This work proposes criteria to typify the levels of atmospheric pollen as an extreme pollen event (EPE), and aims to determine the meteorological variables that can affect the presence and permanence of high pollen concentrations over a period of time. To address this goal, the quasi-climatological pollen dataset recorded in Granada (Southeastern Spain) during the period 1992–2019, has been used. On the daily accumulated pollen concentrations, the 95th, 97th and 99th percentiles were calculated. Spearman's correlation between the pollen concentration exceeding the proposed thresholds (C > P95 , C > P97 , C > P99) and surface meteorological variables recorded during up to five days before the event were established in order to identify the meteorological conditions that might affect the EPEs. As for the number of days with values higher than the established percentiles, it has been seen that in the case of total pollen and Olea , Cupressaceae and Pinus , there is a robust monotonically ascending trend throughout the study period. Regarding meteorological variables, relative humidity and 24-h accumulated precipitation are shown as the two most influential variables up to three days before the event, although temperatures, visibility and wind direction also show a correlation with some pollen types. The criteria proposed in this work allow us for classifying high levels of pollen as an EPE, and lay the foundations of these extreme events in a context of climate change in which they will become more frequent. [Display omitted] • Criteria identifying extreme pollen events (EPEs) were established. • Very high concentrations of pollen can be registered on certain occasions. • Increasing trend of number of EPEs for Olea and Cupressaceae were registered. • Temperature and relative humidity are the most influential variables for EPEs. • Visibility presented a significant correlation with some pollen types during EPEs. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. Contribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean
- Author
-
M. Sicard a, b, R. Barragan a, C. Muñoz-Porcar a, A. Comerón a, M. Mallet c, F. Dulac d, J. Pelon e, L. Alados Arboledas f, g, A. Amodeo h, A. Boselli h, i, J. A. Bravo-Aranda f, G. D'amico h, M. J. Granados Muñoz f, G. Leto j, J. L. Guerrero Rascado f, F. Madonna h, L. Mona h, G. Pappalardo h, M. R. Perrone k, P. Burlizzi k, F. Rocadenbosch a, A. Rodríguez-Gómez a, S. Scollo l, N. Spinelli i, m, G. Titos f, X. Wang i, n, R. Zanmar Sanchez j, Remote Sensing Laboratory [Barcelona] (RSLab), Universitat Politècnica de Catalunya [Barcelona] (UPC), Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie Atmosphérique Expérimentale (CAE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Departamento de Fisica Aplicada [Granada], Universidad de Granada = University of Granada (UGR), Instituto Interuniversitario de Investigacion del Sistema Tierra en Andalucia (IISTA-CEAMA), Istituto di Metodologie per l'Analisi Ambientale (IMAA), Consiglio Nazionale delle Ricerche [Potenza] (CNR), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), INAF - Osservatorio Astrofisico di Catania (OACT), Istituto Nazionale di Astrofisica (INAF), Dipartimento di Matematica e Fisica 'Ennio de Georgi', Università del Salento [Lecce], Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), Université du Littoral Côte d'Opale (ULCO)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Fisiche [Naples], University of Naples Federico II = Università degli studi di Napoli Federico II, Istituto Superconduttori, Materiali Innovativi e Dispositivi (SPIN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Universidad de Granada (UGR), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Università degli studi di Napoli Federico II, Consiglio Nazionale delle Ricerche [Roma] (CNR), Sicard, M., Barragan, R., Muñoz Porcar, C., Comerón, A., Mallet, M., Dulac, F., Pelon, J., Alados Arboledas, L., Amodeo, A., Boselli, A., Bravo Aranda, J. A., D’Amico, G., Granados Muñoz, M. J., Leto, G., Guerrero Rascado, J. L., Madonna, F., Mona, L., Pappalardo, G., Perrone, Maria Rita, Burlizzi, Pasquale, Rocadenbosch, F., Rodríguez Gómez, A., Scollo, S., Spinelli, Nicola, Titos, G., Wang, Xiaoxia, Zanmar Sanchez, R., Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció, Universitat Politècnica de Catalunya. CTE-CRAE - Grup de Recerca en Ciències i Tecnologies de l'Espai, Muñoz-Porcar, C., Bravo-Aranda, J. A., Perrone, M. R., Burlizzi, P., Rodríguez-Gómez, A., Spinelli, N., and Wang, X.
- Subjects
Mediterranean climate ,Teledetecció ,010504 meteorology & atmospheric sciences ,Meteorology ,Mineral dust ,Mediterranean ,7. Clean energy ,01 natural sciences ,Mediterranean Basin ,010309 optics ,0103 physical sciences ,monitoring of a Saharan ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,Optical depth ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Radiative forcing ,Remote sensing ,Trace gas ,Aerosol ,Lidar ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC] ,13. Climate action ,ChArMEx ,Contribution of EARLINET/ACTRIS ,summer 2013 ,General Earth and Planetary Sciences ,Environmental science ,Special Observing ,Earth and Planetary Sciences (all) - Abstract
International audience; In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multi-intrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms of dust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.
- Published
- 2016
- Full Text
- View/download PDF
12. A European research infrastructure for the aerosol study on a continental scale: EARLINET-ASOS
- Author
-
Dimitar Stoyanov, Dimitris Balis, Maria Rita Perrone, Vincenzo Rizi, Aldo Amodeo, Aleksander Pietruczuk, Georg Hansen, Doina Nicolae, Ove Gustaffson, Arnoud Apituley, Jens Bösenberg, Christine Böckmann, Albert Ansmann, Valentin Simeonov, Adolfo Comerón, Nicola Spinelli, Matthias Wiegner, Anatoly Chaikovsky, Volker Freudenthaler, Alexandros Papayannis, François Ravetta, Thomas Trickl, Manuel Pujadas, Gelsomina Pappalardo, Valentin Mitev, Jean-Philippe Putaud, Lucas Alados-Arboledas, Aldo, Amodeo, Gelsomina, Pappalardo, Jens, Bösenberg, Albert, Ansmann, Arnoud, Apituley, Lucas Alados, Arboleda, Dimitris, Bali, Christine, Böckmann, Anatoly, Chaikovsky, Adolfo, Comeron, Volker, Freudenthaler, Ove, Gustaffson, Georg, Hansen, Valentin, Mitev, Doina, Nicolae, Alexandros, Papayanni, Maria Rita, Perrone, Aleksander, Pietruczuk, Manuel, Pujada, Jean Philippe, Putaud, Francois, Ravetta, Vincenzo, Rizi, Valentin, Simeonov, Spinelli, Nicola, Dimitar, Stoyanov, Thomas, Trickl, Matthias, Wiegner, Amodeo, A, Pappalardo, G, Bösenberg, J, Ansmann, A, Apituley, A, ALADOS ARBOLEDAS, L, Balis, D, Böckmann, C, Chaikovskya, A, Comeron, A, Freudenthaler, V, Gustaffson, O, Hansen, G, Mitev, V, Nicolae, D, Papayannis, A, Perrone, Maria Rita, Pietruczuk, A, Pujadas, M, PUTAUD J., P, Ravetta, F, Rizi, V, Simeonov, V, Spinelli, N, Stoyanov, D, Trickl, T, and Wiegner, M.
- Subjects
Profiling (computer programming) ,Meteorology ,aerosol ,EARLINET ,European research ,Aerosol ,Lidar ,Data exchange ,Environmental science ,Satellite ,Scale (map) ,lidar ,Atmospheric optics ,Remote sensing - Abstract
The present knowledge of the aerosol distribution is not sufficient to estimate the aerosol influence on global and regional environmental conditions and climate. This observational gap can be closed by using advanced laser remote sensing. EARLINET (European Aerosol Research Lidar Network) is the first aerosol lidar network, established in 2000, with the main goal to provide a comprehensive, quantitative, and statistically significant database for the aerosol distribution on a continental scale. EARLINET is a coordinated network of European stations (25 at present) using advanced lidar methods for the vertical profiling of aerosols. The network activity is based on simultaneous scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. Further observations are performed to monitor special events. EARLINET-ASOS (Advanced Sustainable Observation System) is a five year EC Project started in 2006, based on the EARLINET infrastructure. The main objectives are: to make EARLINET a world-leading instrument for the observation of the 4-D aerosol distribution on continental scale; to foster aerosol-related process studies, validation of satellite sensors, model development and validation, assimilation of aerosol data into operational models; and to build a comprehensive climatology of the aerosol distribution.
- Published
- 2007
13. EARLINET-ASOS: programs and perspectives for the aerosol study on continental scale
- Author
-
Jean-Philippe Putaud, Gelsomina Pappalardo, Dimitar Stoyanov, Doina Nicolae, Aleksander Pietruczuk, François Ravetta, Albert Ansmann, Georg Hansen, Thomas Trickl, Arnoud Apituley, Lucas Alados Arboledas, Manuel Pujadas, Maria Rita Perrone, Volker Freudenthaler, Aldo Amodeo, Valentin Mitev, Valentin Simeonov, Adolfo Comerón, Anatoly Chaikovsky, Dimitris Balis, Jens Bösenberg, Vincenzo Rizi, Christine Böckmann, Nicola Spinelli, Matthias Wiegner, Alexandros Papayannis, Pappalardo, G, Bösenberg, J, Amodeo, A, Ansmann, A, Apituley, A, ALADOS ARBOLEDAS, L, Balis, D, Böckmann, C, Chaikovsky, A, Comeron, A, Freudenthaler, V, Hansen, G, Mitev, V, Nicolae, D, Papayannis, A, Perrone, Maria Rita, Pietruczuk, A, Pujadas, M, PUTAUD J., P, Ravetta, F, Rizi, V, Simeonov, V, Spinelli, N, Stoyanov, D, Trickl, T, and Wiegner, M.
- Subjects
Data set ,Data processing ,Lidar ,Meteorology ,aerosol ,EARLINET ,Environmental science ,Satellite ,Scale (map) ,Retrieval algorithm ,Global environmental analysis ,lidar ,Aerosol - Abstract
EARLINET, the European Aerosol Research Lidar Network, is the first aerosol lidar network, established in 2000, with the main goal to provide a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on a continental scale. At present, 23 stations distributed over Europe are part of the network. The EARLINET-ASOS (Advanced Sustainable Observation System) EC Project, starting on the EARLINET infrastructure, will contribute to the improvement of continuing observations and methodological developments that are urgently needed to provide the multi-year continental scale data set necessary to assess the impact of aerosols on the European and global environment and to support future satellite missions. The main objective of EARLINET-ASOS 5-year project, started on 1 March 2006, is to improve the EARLINET infrastructure resulting in a better spatial and temporal coverage of the observations, continuous quality control for the complete observation system, and fast availability of standardized data products. This will be reached by defining and using common standards for instruments, operation procedures, observation schemes, data processing including advanced retrieval algorithms, and dissemination of data. The expected outcome is the most comprehensive data source for the 4-D spatio-temporal distribution of aerosols on a continental scale.
- Published
- 2006
14. A Methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals
- Author
-
I. Binietoglou1, S. Basart2, L. Alados-Arboledas3, 4, V. Amiridis5, A. Argyrouli6, H. Baars7, J. M. Baldasano2, D. Balis8, L. Belegante1, J. A. Bravo-Aranda3, P. Burlizzi9, V. Carrasco10, A. Chaikovsky11, A. Comerón12, G. D'Amico13, M. Filioglou8, M. J. Granados-Muñoz3, J. L. Guerrero-Rascado3, L. Ilic14, P. Kokkalis5, 6, A. Maurizi15, L. Mona13, F. Monti15, C. Muñoz-Porcar12, D. Nicolae1, A. Papayannis6, G. Pappalardo13, G. Pejanovic16, S. N. Pereira10, M. R. Perrone9, A. Pietruczuk17, M. Posyniak17, F. Rocadenbosch12, A. Rodríguez-Gómez12, M. Sicard12, N. Siomos8, A. Szkop17, E. Terradellas19, A. Tsekeri5, A. Vukovic16, U. Wandinger7, J. Wagner7, Universitat Politècnica de Catalunya. Departament de Projectes d'Enginyeria, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. GReCT - Grup de Recerca de Ciències de la Terra, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció, Barcelona Supercomputing Center, Binietoglou, I., Basart, S., Alados Arboledas, L., Amiridis, V., Argyrouli, A., Baars, H., Baldasano, J. M., Balis, D., Belegante, L., Bravo Aranda, J. A., Burlizzi, Pasquale, Carrasco, V., Chaikovsky, A., Comeroe, A., D'Amico, G., Filioglou, M., Granados Munoz, M. J., Guerrero Rascado, J. L., Ilic, L., Kokkalis, P., Maurizi, A., Mona, L., Monti, F., Munoz Porcar, C., Nicolae, D., Papayannis, A., Pappalardo, G., Pejanovic, G., Pereira, S. N., Perrone, Maria Rita, Pietruczuk, A., Posyniak, M., Rocadenbosch, F., Rodriguez Gomez, A., Sicard, M., Siomos, N., Szkop, A., Terradellas, E., Tsekeri, A., Vukovic, A., Wandinger, U., and Wagner, J.
- Subjects
Atmospheric Science ,Radiació solar ,010504 meteorology & atmospheric sciences ,aerosol ,Fotometria ,Aerosols atmosfèrics ,01 natural sciences ,Aire -- Qualitat -- Mesurament ,Photometry ,Air quality – Measurement ,Solar radiation ,sun-photometer ,lcsh:TA170-171 ,Redes de teledetección ,Retrieval algorithm ,lcsh:Earthwork. Foundations ,methodology ,Atmospheric aerosols ,lcsh:Environmental engineering ,AERONET ,Polvo del desierto ,Lidar ,lidar measurements ,Dust concentration ,performance ,Meteorology ,Remote-sensing networks ,synergistic EARLINET/AERONET ,investigating ,Optical radar ,Mineral dust ,Sun photometer ,010309 optics ,Infrastructure network ,0103 physical sciences ,Remote sensing ,0105 earth and related environmental sciences ,model ,lcsh:TA715-787 ,Enginyeria electrònica::Optoelectrònica [Àrees temàtiques de la UPC] ,Inversion (meteorology) ,Pols mineral ,Atmospheric Aerosol. Remote sensing ,Dust transport models ,Radar òptic ,Aerosol ,Trace gas ,desert dust ,Environmental science ,Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica [Àrees temàtiques de la UPC] - Abstract
Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 µg m-3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies The financial support of the ACTRIS Re- search Infrastructure Project supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254 is gratefully acknowledged. This project has also received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 289923 – ITaRS. S. Basart and J. M. Baldasano acknowledge the CICYT project (CGL2010-19652 and CGL2013-46736) and Severo Ochoa (SEV-2011-00067) programme of the Spanish Government. This program has received funding from the Ministry of Education and Science of the Republic of Serbia through project III43007. BSC-DREAM8b and NMMB/BSC-Dust simulations were performed on the Mare Nostrum supercomputer hosted by Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS). We thank the AERONET PI’s and their staff for establishing and main-taining the 10 sites used in this investigation. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model used in this publication. The authors would like to acknowledge the use of Google maps for the images used for realizing Fig. 2. We would also like to thank Slobodan Nickovic for his support and comments during the preparation of this manuscript. We would like to thank the editor and the reviewers for their contribution to the final version of this manuscript.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.