1. Differential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae).
- Author
-
Goodger, Jason Q D, Senaratne, Samiddhi L, Nicolle, Dean, and Woodrow, Ian E
- Subjects
- *
MYRTACEAE , *EUCALYPTUS , *PLANT species , *PLANT metabolites , *SESQUITERPENE lactones , *GAS chromatography - Abstract
Trees and shrubs from the genus Eucalyptus are characterized by the presence of numerous foliar oil glands that generally house mono- and sesquiterpenes. In some species, glands are also known to house substantial quantities of unrelated secondary metabolites such as volatile, aromatic β-triketones. It is not known if these compounds are co-housed with terpenes or if they are produced in distinct, metabolically specialized glands. We showed that Eucalyptus brevistylis —a species with appreciable foliar quantities of both β-triketones and terpenes—contains two visually distinct gland types in leaves, one that is translucent and the other golden-brown. Gas chromatographic analyses of solvent extracts of the two gland types showed that the translucent glands contain sesquiterpene alcohol cubenols and cubebols (termed 'sesquiterpene glands'), whereas the golden-brown glands contain predominantly the β-triketone conglomerone with lesser amounts of sesquiterpene hydrocarbon caryophyllenes (termed 'triketone glands'). Analysis of leaves from trees of different ages, from young saplings through to advanced age trees, showed a gradual increase in the abundance of sesquiterpene glands relative to triketone glands as plants aged. Such ontogenetic regulation of foliar secondary metabolite concentration appears to be a common feature of Eucalyptus species, albeit at different temporal scales. A similar ontogenetic pattern was observed in ageing leaves, with mature leaves having a higher proportion of sesquiterpene glands than young leaf tips. It is concluded that regulation of the relative abundances of the two gland types with ontogeny likely reflects the different herbivores present at the different life stages of leaves and whole plants. In particular, leaf tips and young plants may be advantaged by deploying higher amounts of insecticidal β-triketones. The concurrent deployment of two metabolically distinct gland types in leaves is a rare phenomenon and a novel finding for myrtaceous trees. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF