6 results on '"Wisecaver JH"'
Search Results
2. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species.
- Author
-
Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, and Rokas A
- Subjects
- Alleles, Aspergillus fumigatus metabolism, Biological Evolution, Fungal Proteins metabolism, Fungi genetics, Genetic Variation genetics, Genome, Fungal genetics, Genomics methods, Multigene Family genetics, Mutation genetics, Polymorphism, Genetic genetics, Aspergillus fumigatus genetics, Metabolic Networks and Pathways genetics, Secondary Metabolism genetics
- Abstract
Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.
- Published
- 2017
- Full Text
- View/download PDF
3. A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants.
- Author
-
Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, and Rokas A
- Subjects
- Computational Biology, Gene Expression Profiling, Gene Expression Regulation, Plant physiology, Multigene Family genetics, Gene Expression Regulation, Plant genetics, Metabolic Networks and Pathways genetics, Metabolic Networks and Pathways physiology
- Abstract
Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products., (© 2017 American Society of Plant Biologists. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
4. Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus Aspergillus.
- Author
-
Lind AL, Wisecaver JH, Smith TD, Feng X, Calvo AM, and Rokas A
- Subjects
- Aspergillus classification, Evolution, Molecular, Genome, Fungal, Aspergillus genetics, Aspergillus metabolism, Biological Evolution, Metabolic Networks and Pathways
- Abstract
Filamentous fungi produce diverse secondary metabolites (SMs) essential to their ecology and adaptation. Although each SM is typically produced by only a handful of species, global SM production is governed by widely conserved transcriptional regulators in conjunction with other cellular processes, such as development. We examined the interplay between the taxonomic narrowness of SM distribution and the broad conservation of global regulation of SM and development in Aspergillus, a diverse fungal genus whose members produce well-known SMs such as penicillin and gliotoxin. Evolutionary analysis of the 2,124 genes comprising the 262 SM pathways in four Aspergillus species showed that most SM pathways were species-specific, that the number of SM gene orthologs was significantly lower than that of orthologs in primary metabolism, and that the few conserved SM orthologs typically belonged to non-homologous SM pathways. RNA sequencing of two master transcriptional regulators of SM and development, veA and mtfA, showed that the effects of deletion of each gene, especially veA, on SM pathway regulation were similar in A. fumigatus and A. nidulans, even though the underlying genes and pathways regulated in each species differed. In contrast, examination of the role of these two regulators in development, where 94% of the underlying genes are conserved in both species showed that whereas the role of veA is conserved, mtfA regulates development in the homothallic A. nidulans but not in the heterothallic A. fumigatus. Thus, the regulation of these highly conserved developmental genes is divergent, whereas-despite minimal conservation of target genes and pathways-the global regulation of SM production is largely conserved. We suggest that the evolution of the transcriptional regulation of secondary metabolism in Aspergillus represents a novel type of regulatory circuit rewiring and hypothesize that it has been largely driven by the dramatic turnover of the target genes involved in the process.
- Published
- 2015
- Full Text
- View/download PDF
5. The evolution of fungal metabolic pathways.
- Author
-
Wisecaver JH, Slot JC, and Rokas A
- Subjects
- Ascomycota genetics, Gene Duplication, Gene Regulatory Networks, Gene Transfer, Horizontal, Genes, Fungal, Multigene Family, Phylogeny, Evolution, Molecular, Genome, Fungal, Metabolic Networks and Pathways genetics
- Abstract
Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for the generation of fungal metabolic diversity.
- Published
- 2014
- Full Text
- View/download PDF
6. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa).
- Author
-
Molnár I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, and Hackett JD
- Subjects
- Biofuels, Biological Transport genetics, Biopolymers biosynthesis, Chlorophyll metabolism, Expressed Sequence Tags, High-Throughput Nucleotide Sequencing, Molecular Sequence Annotation, Photosynthesis genetics, Plant Oils metabolism, Plant Proteins biosynthesis, Protein Structure, Tertiary, S-Adenosylmethionine metabolism, Sequence Analysis, DNA, Starch biosynthesis, Triglycerides biosynthesis, Chlorophyta genetics, Chlorophyta metabolism, Metabolic Networks and Pathways genetics, Metabolome genetics, Plant Proteins genetics, Terpenes metabolism, Transcriptome
- Abstract
Background: Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy., Results: A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated., Conclusions: The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.