8 results on '"Caselles V"'
Search Results
2. Improved meteorology and surface fluxes in mesoscale modelling using adjusted initial vertical soil moisture profiles.
- Author
-
Gómez, I., Caselles, V., Estrela, M.J., Sánchez, J.M., Rubio, E., and Miró, J.J.
- Subjects
- *
CLIMATE change , *METEOROLOGICAL observations , *MESOSCALE convective complexes , *SOIL moisture , *ATMOSPHERIC models - Abstract
The Regional Atmospheric Modeling System (RAMS) is being used for different and diverse purposes, ranging from atmospheric and dispersion of pollutants forecasting to agricultural meteorology and ecological modelling as well as for hydrological purposes, among others. The current paper presents a comprehensive assessment of the RAMS forecasts, comparing the results not only with observed standard surface meteorological variables, measured at FLUXNET stations and other portable and permanent weather stations located over the region of study, but also with non-standard observed variables, such as the surface energy fluxes, with the aim of evaluating the surface energy budget and its relation with a proper representation of standard observations and key physical processes for a wide range of applications. In this regard, RAMS is assessed against in-situ surface observations during a selected period within July 2011 over Eastern Spain. In addition, the simulation results are also compared with different surface remote sensing data derived from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) (MSG-SEVIRI) as well as the uncoupled Land Surface Models (LSM) Global Land Data Assimilation System (GLDAS). Both datasets complement the available in-situ observations and are used in the current study as the reference or ground truth when no observations are available on a selected location. Several sensitivity tests have been performed involving the initial soil moisture content, by adjusting this parameter in the vertical soil profile ranging from the most superficial soil layers to those located deeper underground. A refined adjustment of this parameter in the initialization of the model has shown to better represent the observed surface energy fluxes. The results obtained also show an improvement in the model forecasts found in previous studies in relation to standard observations, such as the air temperature and the moisture fields. Therefore, the application of a drier or wetter soil in distinct soil layers within the whole vertical soil profile has been found to be crucial in order to produce a better agreement between the simulation and the observations, thus reiterating the determining role of the initial soil moisture field in mesoscale modelling, but in this case considering the variation of this parameter vertically. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. Comparative assessment of RAMS and WRF short-term forecasts over Eastern Iberian Peninsula using various in-situ observations, remote sensing products and uncoupled land surface model datasets.
- Author
-
Gómez, I., Caselles, V., Estrela, M.J., and Miró, J.J.
- Subjects
- *
WEATHER forecasting , *METEOROLOGICAL observations , *POLYCYCLIC aromatic hydrocarbons & the environment , *MESOSCALE convective complexes , *ATMOSPHERIC models - Abstract
The Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting (WRF) mesoscale models are being used for weather and air quality studies as well as forecasting tools in Numerical Weather Prediction (NWP) systems. In the current study, we perform a comparative assessment of these models under distinct typical atmospheric conditions, classified according to the dominant wind flow and cloudiness, over Eastern Iberian Peninsula. This study is focused on the model representation of key physical processes in terms of meteorology and surface variables during a 7-days period in summer 2011. The hourly outputs produced by these two models are compared not only with observed standard surface variables, measured at different permanent weather stations located over the region of study, but also with different surface remote sensing products and uncoupled Land Surface Models (LSM) datasets. Confronting RAMS and WRF, the current study highlights relevant differences over areas near the coast when mesoscale circulations or Eastern synoptic advections are developed over the region of study. A higher moisture content is observed under these atmospheric conditions, due to the moisture transport by the sea breeze inland. In this regard, it has been found that the Eastern wind field simulated by WRF reaches inland areas and comprises a larger sea breeze extension than RAMS. This sea breeze development impacts meteorology and surface variables in locations not too close to the coast, but still affected by land-sea winds. Additionally, WRF remains more windy and moister than RAMS at night-time, while alike results are found under Western synoptic advections. The results obtained in the current paper show differences under distinct dominant atmospheric conditions, which outline further research in this field in order to achieve more general conclusions. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. Simulation of surface energy fluxes and meteorological variables using the Regional Atmospheric Modeling System (RAMS): Evaluating the impact of land-atmosphere coupling on short-term forecasts.
- Author
-
Gómez, I., Caselles, V., Estrela, M.J., Sánchez, J.M., and Rubio, E.
- Subjects
- *
METEOROLOGICAL observations , *SURFACE energy , *FLUX (Energy) , *ATMOSPHERIC models , *LAND-atmosphere interactions - Abstract
Atmospheric mesoscale numerical models are commonly used not only for research and air quality studies, but also for other related applications, such as short-term weather forecasting for atmospheric, hydrological, agricultural and ecological modelling. A key element to produce faithful simulations is the proper representation of the soil parameters used in the initialization of the corresponding mesoscale numerical model. The Regional Atmospheric Modeling System (RAMS) is used in the current study. The model code has been updated in order to permit the model to be initialized using a heterogeneous soil moisture and temperature distribution derived from land surface models. Particularly, RAMS has been adapted to incorporate the Global Land Data Assimilation System (GLDAS) dataset for the initialization of the corresponding soil parameters. The results obtained using this heterogeneous initialization are compared to the model results obtained by the default homogeneous RAMS initializations. A series of numerical experiments have been conducted for a 7-days period over eastern Spain within the 2011 summer season. The selected period covers different typical summer atmospheric situations from the region of study. Ground data from two FLUXNET stations, together with the measurements registered by a portable weather station, located over the region of study, and other permanent weather stations are used for the result assessment. Incorporating the GLDAS product in the initialization of RAMS has been found to remarkably improve the representation of surface sensible weather parameters. On the other hand, significant differences are still observed in the proper simulation of the surface parameters when the model is applied to well vegetated areas in comparison to those obtained over poor and/or sparsely vegetated regions. Considering the better agreement found in this latter case, we have performed several sensitivity tests regarding land-surface-atmosphere coupling with the aim of improving the original results over well vegetated areas. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. Impacts of soil moisture content on simulated mesoscale circulations during the summer over eastern Spain.
- Author
-
Gómez, I., Caselles, V., and Estrela, M.J.
- Subjects
- *
SOIL moisture , *WEATHER forecasting , *HUMIDITY , *WIND speed , *SURFACE temperature - Abstract
The Regional Atmospheric Modeling System (RAMS) version 6.0 has been used to investigate the impact and influence of initial soil moisture distributions on mesoscale circulations. To do this, two different events have been selected from the 2011 summer season: one at the beginning of the season (June) and the other one at the end of the season (August). For each of these mesoscale frameworks a total of five distinct simulations were performed varying the initial soil moisture content: a control run and four additional sensitivity tests. The control run, corresponding to a low soil moisture content, is the one used within the real-time weather forecasting system implemented in the Valencia Region. In the corresponding sensitivity simulations this low value has been progressively increased in different steps until the original soil moisture content doubled. It has been found that high soil moisture is associated with colder near-surface temperature, a moister relative humidity and a slightly lower near-surface wind speed, whereas a drier soil resulted in a dryer relative humidity, warmer temperature and a slight low-level wind. In general, the highest soil moisture contents are required to reproduce the near-surface daily cycles of temperature and relative humidity through higher values of latent heat flux and lower values of sensible heat flux. In this regard, moistening the soil improves the previous results obtained using the RAMS configuration used within the operational forecasting system. However, the wind speed is not quite sensitive to changes in the soil moisture content over flatter terrain. Finally, although a warming and dryer mixing layer is obtained with the lowest soil moisture content, the mixing layer height remains practically unchanged when using the distinct configurations over flat terrain. These differences are enhanced over more complex terrain. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
6. RAMS-forecasts comparison of typical summer atmospheric conditions over the Western Mediterranean coast.
- Author
-
Gómez, I., Caselles, V., Estrela, M.J., and Niclòs, R.
- Subjects
- *
FORECASTING , *SUMMER , *ATMOSPHERIC models , *COMPUTER simulation , *METEOROLOGY , *ADVECTION - Abstract
Abstract: The Regional Atmospheric Modeling System (RAMS) has been used in order to perform a high-resolution numerical simulation of two meteorological events related to the most common atmospheric environments during the summer over the Western Mediterranean coast: mesoscale circulations and western synoptic advections. In this regard, we take advantage of the operational RAMS configuration running within the real-time forecasting system environment already implemented over this Mediterranean area, precisely in the Valencia Region and nearby areas. The attention of this paper is especially focused on identifying the main features of both events and the ability of the model in resolving the associated characteristics as well as in performing a comprehensive evaluation of the model by means of diverse meteorological observations available within the selected periods over the area of study. Additionally, as this paper is centred in RAMS-based forecasts, two simulations are operated applying the most two recent versions of the RAMS model implemented in the above-mentioned system: RAMS 4.4 and RAMS 6.0. Therefore, a comparison among both versions of the model has been performed as well. Finally, it is our intention to contrast the RAMS forecasts for two completely different atmospheric conditions common with the area of study in the summer. A main difference between the simulation of both meteorological situations has been found in the humidity. In this sense, whilst the model underestimates this magnitude considering the mesoscale event, especially at night time, the model reproduces the daily humidity properly under the western synoptic advection. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
7. Improving RAMS and WRF mesoscale forecasts over two distinct vegetation covers using an appropriate thermal roughness length parameterization.
- Author
-
Gómez, I., Caselles, V., and Estrela, M.J.
- Subjects
- *
GROUND vegetation cover , *NUMERICAL weather forecasting , *AGRICULTURAL meteorology , *DIFFUSION - Abstract
• RAMS and WRF forecasts are compared over two very distinct vegetation covers. • Sensitivity to alternative thermal roughness length (z 0h) formulations is assessed. • RAMS forecasts are improved over the forested area using the Zilitinkevich z 0h. • WRF forecasts are improved over the forested area using the Chen and Zhang z 0h. • LST is improved over the sparsely vegetated area using alternative z 0h in WRF. Land Surface Models (LSM) have shown some difficulties to properly simulate day-time 2-m air and surface skin temperatures. This kind of models are coupled to atmospheric models in mesoscale modelling, such as the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting (WRF) Model. This model coupling is used within Numerical Weather Prediction Systems (NWP) in order to forecast key physical processes for agricultural meteorology and forestry as well as in ecological modelling. The current study first evaluates the surface energy fluxes and temperatures simulated by these two state-of-the-art NWP models over two distinct vegetated covers, one corresponding to a poor and sparsely vegetated area and the other one corresponding to the tall and well-vegetated area of a forest. On the other hand, the importance of parameterizing the thermal roughness length within the LSM coupled to the corresponding atmospheric model is also evaluated. The LEAF-3 LSM is used within the RAMS modelling environment while the Noah-MP LSM is applied within WRF. Results indicate that the original version of the models underestimates the temperature during the day, more remarkably in the forested area, whereas modifications in the thermal roughness length successfully simulates the temperature and sensible heat flux forecasts over this area. This study highlights the key role of the surface exchange processes when coupling land and atmosphere models. In this regard, incorporating an extra resistance in the surface-layer parameterization through the thermal roughness length is essential to simulate well both temperatures and sensible heat fluxes, which becomes more relevant over tall and well-vegetated areas, such as a forest. This extra resistance for heat exchange prevents effective molecular diffusion in the layer between the momentum roughness length and the thermal roughness length. Additionally, an appropriate description of the canopy height permits to apply an improved surface-layer formulation over different land and vegetation covers. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
8. Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations.
- Author
-
Gómez, I., Ronda, R.J., Caselles, V., and Estrela, M.J.
- Subjects
- *
ATMOSPHERIC boundary layer , *ATMOSPHERIC models , *ENVIRONMENTAL impact analysis , *SOIL moisture , *METEOROLOGICAL observations - Abstract
This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU) PBL. YSU is a first-order scheme that uses non-local eddy diffusivity coefficients to compute turbulent fluxes. It is based on the MRF, and improves it with an explicit treatment of the entrainment. With the aim of evaluating the RAMS results for these PBL parameterizations, a series of numerical simulations have been performed and contrasted with the results obtained using the Mellor and Yamada (MY) scheme, also widely used, and the standard PBL scheme in the RAMS model. The numerical study carried out here is focused on mesoscale circulation events during the summer, as these meteorological situations dominate this season of the year in the Western Mediterranean coast. In addition, the sensitivity of these PBL parameterizations to the initial soil moisture content is also evaluated. The results show a warmer and moister PBL for the YSU scheme compared to both MRF and MY. The model presents as well a tendency to overestimate the observed temperature and to underestimate the observed humidity, considering all PBL schemes and a low initial soil moisture content. In addition, the bias between the model and the observations is significantly reduced moistening the initial soil moisture of the corresponding run. Thus, varying this parameter has a positive effect and improves the simulated results in relation to the observations. However, there is still a significant overestimation of the wind speed over flatter terrain, independently of the PBL scheme and the initial soil moisture used, even though a different degree of accuracy is reproduced by RAMS taking into account the different sensitivity tests. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.