1. Adaptive Resistance to Dual BRAF/MEK Inhibition in BRAF-Driven Tumors through Autocrine FGFR Pathway Activation.
- Author
-
Wang VE, Xue JY, Frederick DT, Cao Y, Lin E, Wilson C, Urisman A, Carbone DP, Flaherty KT, Bernards R, Lito P, Settleman J, and McCormick F
- Subjects
- Animals, Apoptosis, Autocrine Communication, Biomarkers, Tumor metabolism, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung metabolism, Cell Proliferation, Gene Expression Regulation, Neoplastic, High-Throughput Screening Assays, Humans, Lung Neoplasms drug therapy, Lung Neoplasms metabolism, Lung Neoplasms pathology, Melanoma drug therapy, Melanoma metabolism, Mice, Mice, Nude, Prognosis, Survival Rate, Tumor Cells, Cultured, Xenograft Model Antitumor Assays, Antineoplastic Agents pharmacology, Carcinoma, Non-Small-Cell Lung pathology, Drug Resistance, Neoplasm, Fibroblast Growth Factor 1 metabolism, MAP Kinase Kinase 1 antagonists & inhibitors, Melanoma pathology, Proto-Oncogene Proteins B-raf antagonists & inhibitors, Receptor, Fibroblast Growth Factor, Type 1 metabolism
- Abstract
Purpose: Combined MAPK pathway inhibition using dual BRAF and MEK inhibitors has prolonged the duration of clinical response in patients with BRAF
V600E -driven tumors compared with either agent alone. However, resistance frequently arises., Experimental Design: We generated cell lines resistant to dual BRAF/MEK inhibition and utilized a pharmacologic synthetic lethal approach to identify a novel, adaptive resistance mechanism mediated through the fibroblast growth factor receptor (FGFR) pathway., Results: In response to drug treatment, transcriptional upregulation of FGF1 results in autocrine activation of FGFR, which potentiates extracellular signal-regulated kinases (ERK) activation. FGFR inhibition overcomes resistance to dual BRAF/MEK inhibitors in both cell lines and patient-derived xenograft (PDX) models. Abrogation of this bypass mechanism in the first-line setting enhances tumor killing and prevents the emergence of drug-resistant cells. Moreover, clinical data implicate serum FGF1 levels in disease prognosis., Conclusions: Taken together, these results describe a new, adaptive resistance mechanism that is more commonly observed in the context of dual BRAF/MEK blockade as opposed to single-agent treatment and reveal the potential clinical utility of FGFR-targeting agents in combination with BRAF and MEK inhibitors as a promising strategy to forestall resistance in a subset of BRAF-driven cancers., (©2019 American Association for Cancer Research.)- Published
- 2019
- Full Text
- View/download PDF