1. Impact of Polymyxin Resistance on Virulence and Fitness among Clinically Important Gram-Negative Bacteria
- Author
-
Qixia Luo, Yunying Zhu, Tingting Xiao, Yonghong Xiao, and Yuan Wang
- Subjects
Environmental Engineering ,Gram-negative bacteria ,General Computer Science ,biology ,medicine.drug_class ,Materials Science (miscellaneous) ,General Chemical Engineering ,Polymyxin ,General Engineering ,Energy Engineering and Power Technology ,Virulence ,Drug resistance ,biology.organism_classification ,Acinetobacter baumannii ,Microbiology ,medicine ,Colistin ,lipids (amino acids, peptides, and proteins) ,Polymyxin B ,Bacteria ,medicine.drug - Abstract
Humanity is facing an enormous and growing worldwide threat from the emergence of multi-drug-resistant Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymyxin B and E (colistin) constitute the last-line therapies for treating multi-drug-resistant Gram-negative bacteria. Polymyxin is a cationic antibacterial peptide that can destroy the outer membrane of Gram-negative bacteria. With the increasing clinical application of polymyxin, however, there have been many reports of the occurrence of polymyxin-resistant Gram-negative bacteria. This resistance is mainly mediated by the modification or complete loss of lipopolysaccharide (LPS). LPS is also a virulence factor of Gram-negative bacteria, and alterations of LPS may correlate with virulence. Although it is generally believed that the biological costs associated with drug resistance may enable benign susceptible bacteria to overcome resistant bacteria when antibiotic pressure is reduced, some studies have shown that polymyxin-resistant bacteria are associated with higher virulence and greater fitness compared with their susceptible counterparts. To predict the development of polymyxin resistance and evaluate interventions for its mitigation, it is important to understand the relative biological cost of polymyxin resistance compared with susceptibility. The impact of polymyxin resistance mechanisms on the virulence and fitness of these three Gram-negative bacteria are summarized in this review.
- Published
- 2022