1. p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia
- Author
-
Feng Chun Yang, Philip A. Cole, Qin Yang, Chuan Chen, Beth E. Zucconi, Fan Liu, Stephen D. Nimer, Concepción Martínez, Shi Chen, Stephanie Duffort, Ye Xu, Pierre-Jacques Hamard, Luisa Cimmino, Na Man, Jun Sun, Daniel L. Karl, Maria E. Figueroa, Miguel Torres-Martin, Hidehiro Itonaga, Gloria Mas, and Mingjiang Xu
- Subjects
Biology ,Dioxygenases ,Epigenesis, Genetic ,Mice ,Proto-Oncogene Proteins c-myb ,hemic and lymphatic diseases ,Leukemias ,medicine ,Animals ,MYB ,p300-CBP Transcription Factors ,Progenitor cell ,EP300 ,Cell Proliferation ,Serine-Arginine Splicing Factors ,Myelodysplastic syndromes ,Myeloid leukemia ,Cell Differentiation ,General Medicine ,Hematology ,medicine.disease ,Hematopoietic Stem Cells ,Transplantation ,DNA-Binding Proteins ,Repressor Proteins ,Survival Rate ,Haematopoiesis ,Leukemia ,Disease Models, Animal ,Leukemia, Myeloid, Acute ,Myelodysplastic Syndromes ,Mutation ,Cancer research ,Disease Progression ,Epigenetics ,Research Article - Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.
- Published
- 2021