1. Systemic iron overload exacerbates osteoarthritis in the strain 13 guinea pig
- Author
-
Kelly S. Santangelo, Angela J. Marolf, Lindsey H. Burton, and Lauren B. Radakovich
- Subjects
Cartilage, Articular ,Male ,0301 basic medicine ,Liver Iron Concentration ,Knee Joint ,Interleukin-1beta ,Gene Expression ,Osteoarthritis ,Pathogenesis ,chemistry.chemical_compound ,0302 clinical medicine ,Orthopedics and Sports Medicine ,Aggrecans ,Cation Transport Proteins ,Osteoarthritis, Knee ,medicine.anatomical_structure ,Dextran ,Adipose Tissue ,Liver ,Female ,Iron-Dextran Complex ,musculoskeletal diseases ,medicine.medical_specialty ,Iron Overload ,Guinea Pigs ,Biomedical Engineering ,Antigens, Differentiation, Myelomonocytic ,Receptors, Cell Surface ,Article ,Transforming Growth Factor beta1 ,Guinea pig ,03 medical and health sciences ,Femoral head ,Rheumatology ,Antigens, CD ,Internal medicine ,Receptors, Transferrin ,medicine ,Animals ,RNA, Messenger ,Collagen Type II ,030203 arthritis & rheumatology ,Interleukin-6 ,Tumor Necrosis Factor-alpha ,business.industry ,Spectrophotometry, Atomic ,Cartilage ,X-Ray Microtomography ,medicine.disease ,030104 developmental biology ,Endocrinology ,chemistry ,Apoferritins ,Hematinics ,business - Abstract
Summary Objective Iron is emerging as a key player in aging-associated diseases due to its propensity for driving free radical formation. Studies examining the role of iron in the pathogenesis of primary osteoarthritis (OA) are limited. Our objective was to establish a direct relationship between excess iron and OA by administering iron dextran to a guinea pig strain with decreased propensity for developing this disease. Design Twenty, 12-week-old Strain 13 guinea pigs received either iron dextran or dextran control intraperitoneally once weekly for 4 weeks; termination occurred at 16 weeks of age. Iron levels were determined systemically (serum and liver) and within diarthrodial joints [femoral head articular cartilage and infrapatellar fat pads (IFPs) of knee joints]. One knee was collected to score structural changes associated with OA via microcomputed tomography (microCT) and histology using published grading schemes. Articular cartilage and IFPs were harvested from contralateral knees for gene expression analyses. Results Iron overload was confirmed systemically via increased serum iron and liver iron concentration. Articular cartilage and IFPs in the iron dextran group also had higher levels of iron. Excess iron worsened knee OA using both microCT and histologic scoring systems. Gene analyses revealed that exogenous iron altered the expression of iron trafficking proteins, select cytokines, and structural components of cartilage. Conclusion These results demonstrate that systemic iron overload caused cellular iron accumulation in the knee joint. This excess iron is associated with increased expression of local inflammatory mediators and early onset and progression of knee joint OA in Strain 13 animals.
- Published
- 2020
- Full Text
- View/download PDF