1. Matrix metalloproteinase-10 protects against acute kidney injury by augmenting epidermal growth factor receptor signaling
- Author
-
Xiaoli Sun, Jinhua Miao, Qian Ren, Shan Zhou, Yangyang Zuo, Jinlin Liao, Youhua Liu, Lili Zhou, Xue Hong, and Chengxiao Hu
- Subjects
0301 basic medicine ,Cancer Research ,medicine.medical_treatment ,Immunology ,030232 urology & nephrology ,Apoptosis ,Matrix metalloproteinase ,Article ,Cell growth ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,0302 clinical medicine ,Matrix Metalloproteinase 10 ,medicine ,Humans ,Epidermal growth factor receptor ,lcsh:QH573-671 ,Protein kinase B ,Kidney ,biology ,lcsh:Cytology ,urogenital system ,Chemistry ,Growth factor ,Acute kidney injury ,Cell Biology ,Acute Kidney Injury ,medicine.disease ,ErbB Receptors ,030104 developmental biology ,medicine.anatomical_structure ,Cancer research ,biology.protein ,Signal Transduction - Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase involved in regulating a wide range of biologic processes, such as apoptosis, cell proliferation, and tissue remodeling. However, the role of MMP-10 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we show that MMP-10 was upregulated in the kidneys and predominantly localized in the tubular epithelium in various models of AKI induced by ischemia/reperfusion (IR) or cisplatin. Overexpression of exogenous MMP-10 ameliorated AKI, manifested by decreased serum creatinine, blood urea nitrogen, tubular injury and apoptosis, and increased tubular regeneration. Conversely, knockdown of endogenous MMP-10 expression aggravated kidney injury. Interestingly, alleviation of AKI by MMP-10 in vivo was associated with the activation of epidermal growth factor receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase-1 and 2 (ERK1/2) signaling. Blockade of EGFR signaling by erlotinib abolished the MMP-10-mediated renal protection after AKI. In vitro, MMP-10 potentiated EGFR activation and protected kidney tubular cells against apoptosis induced by hypoxia/reoxygenation or cisplatin. MMP-10 was colocalized with heparin-binding EGF-like growth factor (HB-EGF) in vivo and activated it by a process of proteolytical cleavage in vitro. These studies identify HB-EGF as a previously unrecognized substrate of MMP-10. Our findings also underscore that MMP-10 can protect against AKI by augmenting EGFR signaling, leading to promotion of tubular cell survival and proliferation after injury.
- Published
- 2021