1. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial
- Author
-
Carolyn A. Keever-Taylor, Nirav N. Shah, Boro Dropulic, Rimas J. Orentas, Sharon Yim, Winfried Krueger, Michael Kadan, Mehdi Hamadani, Ashley M. Cunningham, Andrew Worden, Timothy S. Fenske, Aniko Szabo, Fenlu Zhu, Parameswaran Hari, Dina Schneider, and Bryon D. Johnson
- Subjects
0301 basic medicine ,Oncology ,medicine.medical_specialty ,medicine.medical_treatment ,Chronic lymphocytic leukemia ,General Biochemistry, Genetics and Molecular Biology ,CD19 ,03 medical and health sciences ,0302 clinical medicine ,Antigen ,Internal medicine ,Medicine ,B cell ,CD20 ,biology ,business.industry ,General Medicine ,Immunotherapy ,medicine.disease ,Chimeric antigen receptor ,Cytokine release syndrome ,030104 developmental biology ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,biology.protein ,business - Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 are a breakthrough treatment for relapsed, refractory B cell malignancies1–5. Despite impressive outcomes, relapse with CD19− disease remains a challenge. We address this limitation through a first-in-human trial of bispecific anti-CD20, anti-CD19 (LV20.19) CAR T cells for relapsed, refractory B cell malignancies. Adult patients with B cell non-Hodgkin lymphoma or chronic lymphocytic leukemia were treated on a phase 1 dose escalation and expansion trial (NCT03019055) to evaluate the safety of 4-1BB–CD3ζ LV20.19 CAR T cells and the feasibility of on-site manufacturing using the CliniMACS Prodigy system. CAR T cell doses ranged from 2.5 × 105–2.5 × 106 cells per kg. Cell manufacturing was set at 14 d with the goal of infusing non-cryopreserved LV20.19 CAR T cells. The target dose of LV20.19 CAR T cells was met in all CAR-naive patients, and 22 patients received LV20.19 CAR T cells on protocol. In the absence of dose-limiting toxicity, a dose of 2.5 × 106 cells per kg was chosen for expansion. Grade 3–4 cytokine release syndrome occurred in one (5%) patient, and grade 3–4 neurotoxicity occurred in three (14%) patients. Eighteen (82%) patients achieved an overall response at day 28, 14 (64%) had a complete response, and 4 (18%) had a partial response. The overall response rate to the dose of 2.5 × 106 cells per kg with non-cryopreserved infusion (n = 12) was 100% (complete response, 92%; partial response, 8%). Notably, loss of the CD19 antigen was not seen in patients who relapsed or experienced treatment failure. In conclusion, on-site manufacturing and infusion of non-cryopreserved LV20.19 CAR T cells were feasible and therapeutically safe, showing low toxicity and high efficacy. Bispecific CARs may improve clinical responses by mitigating target antigen downregulation as a mechanism of relapse. A new bispecific CAR T cell product targeting the CD20 and CD19 antigens demonstrates an excellent safety profile and high clinical efficacy in patients with B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia.
- Published
- 2020
- Full Text
- View/download PDF