1. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development
- Author
-
Yuqin Wu, Yanwei Xu, Jing Chen, Yuming Guo, Youli Wang, Yan Liu, Lingling Xu, Shuai Gao, Jian-Min Yuan, and Qihang Hou
- Subjects
Chicken intestinal organoid ,Methionine ,Chicken serum ,Cellular differentiation ,Enteroendocrine cell ,SF1-1100 ,Cell biology ,Animal culture ,chemistry.chemical_compound ,medicine.anatomical_structure ,Food Animals ,chemistry ,Paneth cell ,Organoid ,medicine ,Animal Science and Zoology ,Enterocyte differentiation ,Original Research Article ,Stem cell ,Fetal bovine serum - Abstract
Methionine and its hydroxy analogue (MHA) have been shown to benefit mouse intestinal regeneration. The intestinal organoid is a good model that directly reflects the impact of certain nutrients or chemicals on intestinal development. Here, we aimed to establish a chicken intestinal organoid culture method first and then use the model to explore the influence of methionine deficiency and MHA on intestinal organoid development. The results showed that 125-μm cell strainer exhibited the highest efficiency for chicken embryo crypt harvesting. We found that transforming growth factor-β (TGF-β) inhibitor (A8301) supplementation promoted enterocyte differentiation at the expense of the proliferation of intestinal stem cells (ISC). The mitogen-activated protein kinase p38 inhibitor (SB202190) promoted intestinal organoid formation and enterocyte differentiation but suppressed the differentiation of enteroendocrine cells, goblet cells and Paneth cells. However, the suppression of enteroendocrine cell and Paneth cell differentiation by SB202190 was alleviated at the presence of A8301. The glycogen synthase kinase 3 inhibitor (CHIR99021), valproic acid (VPA) alone and their combination promoted chicken intestinal organoid formation and enterocyte differentiation at the expense of the expression of Paneth cells and goblet cells. Chicken serum significantly improved organoid formation, especially in the presence of A8301, SB202190, CHIR99021, and VPA, but inhibited the differentiation of Paneth cells and enteroendocrine cells. Chicken serum at a concentration of 0.25% meets the requirement of chicken intestinal organoid development, and the beneficial effect of chicken serum on chicken intestinal organoid culture could not be replaced by fetal bovine serum and insulin-like growth factor-1 (IGF-1). Moreover, commercial mouse organoid culture medium supplemented with A8301, SB202190, CHIR99021, VPA, and chicken serum promotes chicken organoid budding. Based on the chicken intestinal organoid model, we found that methionine deficiency mimicked by cycloleucine suppressed organoid formation and organoid size, and this effect was reinforced with increased cycloleucine concentrations. Methionine hydroxy analogue promoted regeneration of ISC but decreased cell differentiation compared with the results obtained with L-methionine. In conclusion, our results provide a potentially excellent guideline for chicken intestinal organoid culture and insights into methionine function in crypt development.
- Published
- 2022