7 results on '"assembloid"'
Search Results
2. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids
- Author
-
Thomas M Rawlings, Komal Makwana, Deborah M Taylor, Matteo A Molè, Katherine J Fishwick, Maria Tryfonos, Joshua Odendaal, Amelia Hawkes, Magdalena Zernicka-Goetz, Geraldine M Hartshorne, Jan J Brosens, and Emma S Lucas
- Subjects
endometrium ,embryo implantation ,organoid ,assembloid ,senescence ,decidualisation ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.
- Published
- 2021
- Full Text
- View/download PDF
3. Intrinsic and Extrinsic Healing Mechanisms in Tendon: Crosstalk and Regenerative Potential
- Author
-
Stauber, Tino, Snedeker, Jess Gerrit, and De Bock, Katrien
- Subjects
Progenitor cells ,Biomaterials ,Mechanobiology ,Assembloid ,ddc:570 ,Tendon repair ,ddc:610 ,Tendon ,Tendon biomechanics ,Biomarkers ,Interleukin-6 ,Biomedical engineering ,Inflammation ,Medicine ,Fascicle ,Crosstalk ,Macrophages ,Medical sciences, medicine ,Engineering & allied operations ,Life sciences ,ddc:620 - Abstract
Tendons are the organs transferring muscle forces to the bones to enable locomotion. Consequently, populations suffering from tendon-related diseases often share a history of repetitive mechanical overloading and include heavy manual laborers, professional athletes, the obese, and the elderly. The prevalence of tendon-related diseases is projected to rise in Western countries due to their aging societies, increasing obesity, and the popularity of mechanically challenging sport activities. Tendinopathy is the most common tendon-related disease. So far, multiple roadblocks have largely prevented the development of evidence-based and specifically disease-modifying treatment and relapse-preventing regimes for tendinopathy. Since early tendinopathy is often asymptomatic, in vivo human studies only compare supposedly healthy to end-stage diseased tendons and therefore fail to longitudinally capture the pathogenic mechanisms. In in vivo murine models, it is challenging to dissect specific bi- or multicellular interaction pathways triggered by a defined microenvironmental stress (disease, damage, age). While this in vivo complexity prevents fast treatment screening and evaluation, simple traditional 2D model systems generally fail to adequately recapitulate the central tendon function – multi-dimensional mechanical loading including tension (in the direction of the tendon loading), compression (vertically to the direction of tendon loading), and shear from fiber sliding. Tissue-engineered 3D ex vivo model systems could fill this gap, but often lack loadability over extended periods of time and fall short of replicating the in vivo extracellular matrix informing cell behavior. Full murine tendons explants (e.g. Achilles or patellar tendon) on the other hand are small, which hampers clamping reproducibility and collection of sufficient material for cell-, protein-, and gene-level readouts. Murine tail tendon fascicle explants are readily available in large numbers, recapitulate the complex in vivo loading patterns, and possess an in vivo-like extracellular matrix composition but largely lack vascular, immune, and progenitor cell populations present in the so-called extrinsic tendon compartment. The aim of this dissertation was to increase the applicability of murine tail tendon fascicles by fabricating a high-throughput drug testing system mimicking the initial stages of the tendinopathic cascade (overloading, microdamage, inflammation). Conceptually, we divided the tendons repair response into three overlapping parts: the mechanisms governing the intrinsic, tendon core-mediated tendon maintenance and response to microdamage, the danger-signaling pathways deployed by an overwhelmed tendon core to recruit the extrinsic compartment, and ultimately the lesion-healing response mounted by components of the recruited extrinsic compartment. First, we studied the effect of mechanically induced microdamage on tendon core explants in conditions mimicking a quiescent, healthy tendon niche. We created and characterized different levels of functional, structural, and cellular microdamage, which revealed the core’s limited regenerative capabilities. Second, we sequentially added populations of the extrinsic compartment to the model system to characterize their effects on the tendon core explant and emerging cross-compartmental communication. Since the cross-compartmental handshaking has been hypothesized to occur post-damage, these experiments were performed in conditions mimicking an injury-like tendon niche. The resulting hybrid explant // hydrogel assembloid model (which we termed “tenostruct”) recapitulates key post-injury events like degeneration of underloaded core tissue, emigration of a newly discovered core-resident tenoclast population, extrinsic tendon-lineage cells recruiting to the degenerating core to accelerate its degeneration, and extrinsic macrophages differentiating to mitigate the degeneration. Third, we looked further into the cytokine signatures in degrading versus non-degrading tenostructs and identified interleukin-6 (IL-6) as a major differentiating factor. Leveraging the modularity of the tenostructs, we incorporated core tissue from a mouse strain unable to produce interleukin-6 (so-called IL-6 knock-out mice) or added an IL-6 inhibitor to the culture media and found reductions in tendon lineage progenitor recruitment, overall cell proliferation, and degeneration of an IL-6 knock-out core. Finally, we confirmed the upregulation of IL-6 signaling pathways in diseased compared to healthy human samples with microarray data. In summary, we establish a novel hybrid hydrogel // explant assembloid model which allows the user to study the effects of mechanical, metabolic, and matrix-based stressors on construct behaviors ranging from compartment-specific gene expression to mechanical properties. The model easily integrates tissues and cells from genetically modified animals to follow the contribution of a specific pathway in disease progression. We demonstrate the power of the model system by combining it with human data and dissecting the role of IL-6 signaling in tendon lesion progression., Die Hauptfunktion des Sehnenorgans ist die Übertragung von Muskelkräften auf die Knochen um so Bewegungen zu ermöglichen. Aus diesem Grund teilen Patienten mit Sehnenläsionen oft eine Vergangenheit mit wiederholten mechanischen Sehnenüberbelastungen. Untergruppen dieser Patienten umfassen Berufsgattungen die schwere körperliche Arbeit verrichten, professionelle Athleten, übergewichtige Menschen und ältere Menschen. Westlichen Gesellschaften wird aufgrund ihrer Überalterung, dem erhöhten Anteil von übergewichtigen oder gar fettleibigen Individuen und einer immer weiter verbreiterten Popularität von mechanisch herausfordernden Sportarten eine zunehmende Prävalenz von Sehnenläsionen vorausgesagt. Tendinopathien stellen die geläufigste Art von Sehnenläsionen dar. Leider wurde die Entwicklung von evidenzbasierten, krankheitsspezifischen und -modulierenden Behandlungen und rückfallverhindernden Therapien für Tendinopathien bis jetzt durch zahlreiche Barrieren verlangsamt. Da sich Tendinopathien beispielsweise im Frühstadium oft symptomlos präsentieren, können in Menschen durchgeführte Studien nur Gewebe von angeblich gesunden Sehnen mit solchem von weit fortgeschrittenen Krankheitsbildern vergleichen. Diese limitierte zeitliche Auflösung des Krankheitsverlaufs macht es fast unmöglich die Krankheitsentwicklung exakt nachzuvollziehen geschweige denn rückgängig zu machen. In vivo Modelsysteme basierend auf lebenden Nagetieren (wie Mäusen oder Ratten) könnten zwar theoretisch die Nachverfolgung der Krankheitsentwicklung erlauben, deren Komplexität macht es aber schwierig die Auswirkungen von spezifischen Zell-Zell-Interaktionen und Signalwegen isoliert zu studieren. Ausserdem sind Effekte möglicher Auslöser von Tendinopathien in Menschen (z.B. Krankheiten, überbelastungsinduzierter Gewebeschaden und hohes Alter) nur bedingt in Nagetieren induzierbar. Simple, traditionelle in vitro Modellsysteme wären dafür zwar besser geeignet, können aber aufgrund ihrer Zweidimensionalität die im Rahmen der normalen Sehnenfunktion auftretenden multi-dimensionalen Belastungskomponenten wie Zug-, Druck- und Scherkräfte nur ungenügend simulieren. Dreidimensionale in vitro Modelle basierend auf Explantaten oder gezüchtetem Gewebe könnten diese Lücke füllen. Gezüchtete Gewebe weisen aber noch nicht die nötige Stabilität für Langzeitbelastungsstudien auf und reproduzieren die in vivo die Zellen umgebende Matrix höchstens ansatzweise. Explantate zum Beispiel der Achilles oder Patellarsehne erhalten diese Matrix, ihre kurze Länge erschwert jedoch die reproduzierbare Einspannung für mechanische Stimulationen und das Sammeln von genügend Material für umfangreiche Messungen auf den Zell-, Protein- und Genebenen. Die hier verwendeten, aus dem Schwanz von Nagetieren isolierten Sehnenfaszikelexplantate hingegen sind einfach in genügend grossen Mengen zugänglich, können die komplexen in vivo Belastungskomponenten nachvollziehen und erhalten die in vivo Zusammensetzung der zellumgebenden Matrix. Allerdings verlieren diese Sehnenfaszikel, die in ihrer Summe als Sehnenkern zusammengefasst werden, bei der Explantation auch den Zugang zu einigen für die Läsionsheilung benötigten extrinsischen Zellpopulation wie Vorläuferzellen und Zellen des Immunsystems und des vaskulären Systems. Das Ziel dieser Dissertation war es, die aus dem Schwanz von Nagetieren isolierten Sehnenfaszikel für die Fabrikation eines Modellsystems zu testen, dass die frühen Stadien der Tendinopathie (Überbelastung, Gewebeschaden, Entzündungsreaktion) nachvollziehen kann. Dieses Modellsystem sollte sich dabei die einzigartigen Vorteile der Sehnenfaszikel zunutze machen um dann mit grossem Durchsatz Behandlungsmethoden sichten und evaluieren zu können. Konzeptuell unterteilten wir die von der Läsionsschwere abhängigen Reparaturmechanismen der Sehne in drei überlappende Bereiche: Die Mechanismen des für Wartungsarbeiten und Mikroläsionen zuständigen Sehnenkerns, dessen Alarmmechanismen, die bei Überforderung durch grössere Läsionen die Zellpopulationen des extrinsischen Kompartiments rekrutieren, und schliesslich die Läsionsheilungsmechanismen der Komponenten des rekrutierten extrinsischen Kompartiments. In einem ersten Schritt studierten wir die Auswirkungen von überlastungsinduziertem Gewebeschaden auf den Sehnenkern in Kulturbedingungen, die jenen einer gesunden Sehne mit niedriger metabolischer Aktivität nachempfunden waren. Wir erzeugten verschiedene Stufen von Gewebeschaden und charakterisierten deren Effekte auf die funktionellen und strukturellen Eigenschaften der Explantate sowie auf die sich darin befindenden Zellpopulationen. Diese Experimente offenbarten die unerwartet stark limitierten Fähigkeiten des Sehnenkerns zur Selbstreparatur. In einem zweiten Schritt fügten wir dem Sehnenkern nacheinander verschiedene, in einem Hydrogel eingebettete Zellpopulationen aus dem extrinsischen Kompartiment hinzu und charakterisierten die entstehenden wechselseitigen, kompartiments-übergreifenden Interaktionen. Das dabei entstandene hybride Modellsystem nannten wir «Tenostrukt» und exponierten es lädierten Sehnen nachempfundenen Kulturbedingungen, in welchen kompartiments-übergreifende Interaktionen eine entscheidende Rolle spielen. Dabei konnten wir zeigen, dass Tenostrukte fähig sind Schlüsselmerkmale von chronischen Sehnenläsionen zu rekapitulieren. Dazu gehören etwa die fortschreitende Degeneration von unterbelastetem Sehnenkerngewebe, die Migration einer neu entdeckten, sonst im Sehnenkern beheimateten Tenoklastpopulation ins extrinsische Kompartiment, die Rekrutierung von extrinsischen Sehnenlinienvorläuferzellen zum und eine daraus resultierende Degenerationsbeschleunigung im geschädigten Sehnenkern sowie die Differenzierung von und Verlangsamung der Degenerationgeschwindigkeit durch extrinsische Makrophagen. Im dritten Teilprojekt fokussierten wir uns auf Unterschiede in der Produktion von Zytokinen, signalübertragenden Peptiden und Proteinen zwischen degenerierenden und nicht-degenerierenden Tenostrukten und identifizierten dabei unter anderem Interleukin-6 (IL-6) als entscheidenden Faktor. Wir nutzten dann die Modularität der Tenostrukte und ersetzten die Wildtyp Explantate mit solchen von einer Mauslinie, die Interleukin-6 nicht herstellen kann (sogenannte IL-6 knock-out Mäuse) oder ergänzten das Zellkulturmedium mit einem Interleukin-6 Inhibitor. Diese Hemmung der IL-6 Signalübertragung führte zu Reduktionen in der Rekrutierung von Vorläuferzellen, der allgemeinen Zellproliferation und der Degeneration der IL-6 knock-out Explantate. Zum Schluss bestätigten wir die Relevanz der Interleukin-6 Signalübertragung in Tendinopathien indem wir die Genexpression von gesunden und lädierten menschlichen Sehnen miteinander verglichen. Zusammenfassend haben wir ein neuartiges, hybrides Modellsystem bestehend aus einem Hydrogel und einem Explantat entwickelt. Dieses Modelsystem erlaubt es seinen Nutzern, die Effekte von mechanischen, metabolischen und matrix-basierten Stressoren auf das Verhalten des Konstrukts zu untersuchen. Dieses Verhalten kann auf mehreren Ebenen quantifiziert werden: Von der kompartiments-spezifischen Genexpression über die Ausschüttung von Botenstoffen bis hin zu den mechanischen Eigenschaften. Die Modularität des Modellsystems erlaubt eine einfache Integration von Explantaten oder Zellen von genmodifizierten Tieren um dann den Einfluss des modifizierten Faktors auf die kompartiments-übergreifenden Interaktionen zu untersuchen. Wir demonstrierten das dahingehende Potential des neuen Modellsystems anhand der Rolle von Interleukin-6 Signalübertragungen in der Entstehung von Schlüsselmerkmalen der Tendinopathien und bestätigten deren Relevanz mit Daten aus menschlichem Gewebe.
- Published
- 2023
- Full Text
- View/download PDF
4. Organoids to model the endometrium: implantation and beyond
- Author
-
Thomas M Rawlings, Komal Makwana, Emma S. Lucas, and Maria Tryfonos
- Subjects
assembloid ,QH471-489 ,Reproductive Techniques, Assisted ,Reproduction ,organoid ,General Medicine ,Gynecology and obstetrics ,Review ,Fertilization in Vitro ,Biology ,Endometrium ,Andrology ,Organoids ,medicine.anatomical_structure ,Pregnancy ,medicine ,Organoid ,RG1-991 ,Humans ,embryo implantation ,Female - Abstract
Despite advances in assisted reproductive techniques in the 4 decades since the first human birth after in vitro fertilisation, 1–2% of couples experience recurrent implantation failure, and some will never achieve a successful pregnancy even in the absence of a confirmed dysfunction. Furthermore, 1–2% of couples who do conceive, either naturally or with assistance, will experience recurrent early loss of karyotypically normal pregnancies. In both cases, embryo-endometrial interaction is a clear candidate for exploration. The impossibility of studying implantation processes within the human body has necessitated the use of animal models and cell culture approaches. Recent advances in 3-dimensional modelling techniques, namely the advent of organoids, present an exciting opportunity to elucidate the unanswerable within human reproduction. In this review, we will explore the ontogeny of implantation modelling and propose a roadmap to application and discovery. Lay summary A significant number of couples experience either recurrent implantation failure or recurrent pregnancy loss. Often, no underlying disorder can be identified. In both cases, the interaction of the embryo and maternal tissues is key. The lining of the womb, the endometrium, becomes receptive to embryo implantation during each menstrual cycle and provides a nourishing and supportive environment to support ongoing pregnancy. It is not possible to study early pregnancy directly, therefore, modelling embryo-endometrium interactions in the laboratory is essential if we wish to understand where this goes wrong. Advances in the lab have resulted in the development of organoids in culture: 3D cellular structures that represent the characteristics of a particular tissue or organ. We describe past and present models of the endometrium and propose a roadmap for future work with organoid models, from fundamental understanding of the endometrial function and implantation processes to the development of therapeutics to improve pregnancy outcomes and gynaecological health.
- Published
- 2021
5. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids
- Author
-
Deborah M. Taylor, Jan J. Brosens, Thomas M Rawlings, Magdalena Zernicka-Goetz, Katherine J. Fishwick, Maria Tryfonos, Joshua Odendaal, Amelia Hawkes, Geraldine M. Hartshorne, Emma S. Lucas, Komal Makwana, Matteo A. Molè, Zernicka-Goetz, Magdalena [0000-0002-7004-2471], Brosens, Jan J [0000-0003-0116-9329], Lucas, Emma S [0000-0002-8571-8921], Apollo - University of Cambridge Repository, Spencer, Thomas E., and Cooper, Jonathan A.
- Subjects
senescence ,Endometrium ,0302 clinical medicine ,Pregnancy ,cell biology ,Decidual cells ,endometrium ,Biology (General) ,Cellular Senescence ,0303 health sciences ,030219 obstetrics & reproductive medicine ,General Neuroscience ,Embryo ,General Medicine ,3. Good health ,Cell biology ,Organoids ,medicine.anatomical_structure ,Medicine ,Female ,Research Article ,Senescence ,Stromal cell ,QH301-705.5 ,organoid ,Science ,Biology ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,Stroma ,Placenta ,medicine ,Decidua ,Humans ,embryo implantation ,human ,030304 developmental biology ,QM ,assembloid ,General Immunology and Microbiology ,QH ,Regeneration (biology) ,decidualisation ,Decidualization ,QP ,Coculture Techniques ,RG ,Stromal Cells - Abstract
Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterised endometrial assembloids, consisting of gland organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by inhibiting senescence and mesenchymal-epithelial transition, processes involved in endometrial breakdown and regeneration, respectively. Accelerated decidualization resulted in entrapment of co-cultured human blastocysts in a largely static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings demonstrate that senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.
- Published
- 2021
6. Intrinsic and Extrinsic Healing Mechanisms in Tendon: Crosstalk and Regenerative Potential
- Author
-
Stauber, Tino; id_orcid 0000-0002-4060-5747
- Subjects
- Tendon, Tendon repair, Tendon biomechanics, Biomaterials, Biomarkers, Interleukin-6, Assembloid, Biomedical engineering, Inflammation, Mechanobiology, Medicine, Fascicle, Crosstalk, Macrophages, Progenitor cells, Engineering & allied operations, Life sciences, Medical sciences, medicine
- Abstract
Tendons are the organs transferring muscle forces to the bones to enable locomotion. Consequently, populations suffering from tendon-related diseases often share a history of repetitive mechanical overloading and include heavy manual laborers, professional athletes, the obese, and the elderly. The prevalence of tendon-related diseases is projected to rise in Western countries due to their aging societies, increasing obesity, and the popularity of mechanically challenging sport activities. Tendinopathy is the most common tendon-related disease. So far, multiple roadblocks have largely prevented the development of evidence-based and specifically disease-modifying treatment and relapse-preventing regimes for tendinopathy. Since early tendinopathy is often asymptomatic, in vivo human studies only compare supposedly healthy to end-stage diseased tendons and therefore fail to longitudinally capture the pathogenic mechanisms. In in vivo murine models, it is challenging to dissect specific bi- or multicellular interaction pathways triggered by a defined microenvironmental stress (disease, damage, age). While this in vivo complexity prevents fast treatment screening and evaluation, simple traditional 2D model systems generally fail to adequately recapitulate the central tendon function – multi-dimensional mechanical loading including tension (in the direction of the tendon loading), compression (vertically to the direction of tendon loading), and shear from fiber sliding. Tissue-engineered 3D ex vivo model systems could fill this gap, but often lack loadability over extended periods of time and fall short of replicating the in vivo extracellular matrix informing cell behavior. Full murine tendons explants (e.g. Achilles or patellar tendon) on the other hand are small, which hampers clamping reproducibility and collection of sufficient material for cell-, protein-, and gene-level readouts. Murine tail tendon fascicle explants are readily available in large numbers, recapitulate the complex in vivo loading patterns, and possess an in vivo-like extracellular matrix composition but largely lack vascular, immune, and progenitor cell populations present in the so-called extrinsic tendon compartment. The aim of this dissertation was to increase the applicability of murine tail tendon fascicles by fabricating a high-throughput drug testing system mimicking the initial stages of the tendinopathic cascade (overloading, microdamage, inflammation). Conceptually, we divided the tendons repair response into three overlapping parts: the mechanisms governing the intrinsic, tendon core-mediated tendon maintenance and response to microdamage, the danger-signaling pathways deployed by an overwhelmed tendon core to recruit the extrinsic compartment, and ultimately the lesion-healing response mounted by components of the recruited extrinsic compartment. First, we studied the effect of mechanically induced microdamage on tendon core explants in conditions mimicking a quiescent, healthy tendon niche. We created and characterized different levels of functional, structural, and cellular microdamage, which revealed the core’s limited regenerative capabilities. Second, we sequentially added populations of the extrinsic compartment to the model system to characterize their effects on the tendon core explant and emerging cross-compartmental communication. Since the cross-compartmental handshaking has been hypothesized to occur post-damage, these experiments were performed in conditions mimicking an injury-like tendon niche. The resulting hybrid explant // hydrogel assembloid model (which we termed “tenostruct”) recapitulates key post-injury events like degeneration of underloaded core tissue, emigration of a newly discovered core-resident tenoclast population, extrinsic tendon-lineage cells recruiting to the degenerating core to accelerate its degeneration, and extrinsic macrophages differentiating to mitigate the degeneration. Third, we looked further into the cytokine signatures in degrading versus non-degrading tenostructs and identified interleukin-6 (IL-6) as a major differentiating factor. Leveraging the modularity of the tenostructs, we incorporated core tissue from a mouse strain unable to produce interleukin-6 (so-called IL-6 knock-out mice) or added an IL-6 inhibitor to the culture media and found reductions in tendon lineage progenitor recruitment, overall cell proliferation, and degeneration of an IL-6 knock-out core. Finally, we confirmed the upregulation of IL-6 signaling pathways in diseased compared to healthy human samples with microarray data. In summary, we establish a novel hybrid hydrogel // explant assembloid model which allows the user to study the effects of mechanical, metabolic, and matrix-based stressors on construct behaviors ranging from compartment-specific gene expression to mechanical properties. The model easily integrates tissues and cells from genetically modified animals to follow the contribution of a specific pathway in disease progression. We demonstrate the power of the model system by combining it with human data and dissecting the role of IL-6 signaling in tendon lesion progression.
- Published
- 2023
7. Building a Human Brain for Research
- Author
-
Guy Barry and Mainá Bitar
- Subjects
0301 basic medicine ,Opinion ,Computer science ,organoid ,microfluidics ,Model system ,lcsh:RC321-571 ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,0302 clinical medicine ,medicine ,Induced pluripotent stem cell ,human brain ,lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry ,Molecular Biology ,Neural cell ,assembloid ,iPSC ,Experimental model ,Cognition ,Human brain ,ethics ,Embryonic stem cell ,030104 developmental biology ,medicine.anatomical_structure ,Stem cell ,Neuroscience ,030217 neurology & neurosurgery - Abstract
It is vital for our understanding of human-specific development, behavior, cognition, and disease that we possess a reliable, manipulatable, and accurate experimental model of the human brain. Historically, the ability to view and manipulate a human brain model system on a molecular scale in real-time was not achievable. However, recent advances in stem cell technologies make it possible to reproduce, at least partly, human brain development in a laboratory. We are now able to replicate human neural cell types, distinct brain regions and produce organoids from embryonic and induced pluripotent stem cells. Here, we address the main developments in producing multiple neural cell types and organoids and discuss how these technologies are allowing an effective way forward to gain functional insight into human brain development and disorders. We conclude with a brief discussion on potential upcoming ethical implications of this rapidly progressing field.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.