1. DYRK2 downregulation in colorectal cancer leads to epithelial–mesenchymal transition induction and chemoresistance
- Author
-
Chunrong Wu, Guiyin Sun, Fan Wang, Jiangyan Chen, Fangbiao Zhan, Xiaojuan Lian, Jie Wang, Fanbin Weng, Bo Li, Weijun Tang, Jin Quan, and Debing Xiang
- Subjects
Medicine ,Science - Abstract
Abstract Colorectal cancer (CRC) is among the most prominent causes of cancer-associated mortality in the world, with chemoresistance representing one of the leading causes of treatment failure. However, the mechanisms governing such chemoresistance remain incompletely understood. In this study, the role of DYRK2 as a mediator of CRC cell drug resistance and the associated molecular mechanisms were assessed by evaluating human tumor tissue samples, CRC cell lines, and animal model systems. Initial analyses of The Cancer Genome Atlas database and clinical tissue microarrays revealed significant DYRK2 downregulation in CRC in a manner correlated with poor prognosis. We further generated LoVo CRC cells that were resistant to the chemotherapeutic drug 5-FU, and found that such chemoresistance was associated with the downregulation of DYRK2 and a more aggressive mesenchymal phenotype. When DYRK2 was overexpressed in these cells, their proliferative, migratory, and invasive activities were reduced and they were more prone to apoptotic death. DYRK2 overexpression was also associated with enhanced chemosensitivity and the inhibition of epithelial–mesenchymal transition (EMT) induction in these LoVo 5-FUR cells. Co-immunoprecipitation assays revealed that DYRK2 bound to Twist and promoted its proteasomal degradation. In vivo studies further confirmed that the overexpression of DYRK2 inhibited human CRC xenograft tumor growth with concomitant Twist downregulation. Overall, these results thus highlight DYRK2 as a promising therapeutic target in CRC worthy of further investigation.
- Published
- 2022
- Full Text
- View/download PDF