Narelle Cairns, Jeroen Nieuwland, James A. H. Murray, Anthony J. Miller, Christine H. Foyer, Spencer C. Maughan, Renee S Jarvis, Rüdiger Hell, Florian H. Haas, M. Pasternak, Christopher S. Cobbett, Cordula Kruse, Guy Kiddle, Benson Lim, Patrick G. Bray, Thorsten Brach, Christopher L. Muller, Mathilde Orsel, Andreas J. Meyer, Enrique Salcedo-Sora, Institute of Biotechnology, University of Cambridge [UK] (CAM), Department of Genetics, University of Melbourne, Heidelberger Institut für Pflanzenwissenschaften (HIP), Universität Heidelberg [Heidelberg] = Heidelberg University, Rothamsted Research, Biotechnology and Biological Sciences Research Council (BBSRC), Centre for Plant Sciences, University of Leeds, Amélioration des Plantes et Biotechnologies Végétales (APBV), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, Liverpool School of Tropical Medicine (LSTM), Universität Heidelberg [Heidelberg], Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
In Arabidopsis thaliana , biosynthesis of the essential thiol antioxidant, glutathione (GSH), is plastid-regulated, but many GSH functions, including heavy metal detoxification and plant defense activation, depend on cytosolic GSH. This finding suggests that plastid and cytosol thiol pools are closely integrated and we show that in Arabidopsis this integration requires a family of three plastid thiol transporters homologous to the Plasmodium falciparum chloroquine-resistance transporter, Pf CRT. Arabidopsis mutants lacking these transporters are heavy metal-sensitive, GSH-deficient, and hypersensitive to Phytophthora infection, confirming a direct requirement for correct GSH homeostasis in defense responses. Compartment-specific measurements of the glutathione redox potential using redox-sensitive GFP showed that knockout of the entire transporter family resulted in a more oxidized glutathione redox potential in the cytosol, but not in the plastids, indicating the GSH-deficient phenotype is restricted to the cytosolic compartment. Expression of the transporters in Xenopus oocytes confirmed that each can mediate GSH uptake. We conclude that these transporters play a significant role in regulating GSH levels and the redox potential of the cytosol.