1. The importance of three dimensional coronary artery reconstruction accuracy when computing virtual fractional flow reserve from invasive angiography
- Author
-
Roshni Solanki, Rebecca Gosling, Vignesh Rammohan, Giulia Pederzani, Pankaj Garg, James Heppenstall, D. Rodney Hose, Patricia V. Lawford, Andrew J. Narracott, John Fenner, Julian P. Gunn, and Paul D. Morris
- Subjects
Medicine ,Science - Abstract
Abstract Three dimensional (3D) coronary anatomy, reconstructed from coronary angiography (CA), is now being used as the basis to compute ‘virtual’ fractional flow reserve (vFFR), and thereby guide treatment decisions in patients with coronary artery disease (CAD). Reconstruction accuracy is therefore important. Yet the methods required remain poorly validated. Furthermore, the magnitude of vFFR error arising from reconstruction is unkown. We aimed to validate a method for 3D CA reconstruction and determine the effect this had upon the accuracy of vFFR. Clinically realistic coronary phantom models were created comprosing seven standard stenoses in aluminium and 15 patient-based 3D-printed, imaged with CA, three times, according to standard clinical protocols, yielding 66 datasets. Each was reconstructed using epipolar line projection and intersection. All reconstructions were compared against the real phantom models in terms of minimal lumen diameter, centreline and surface similarity. 3D-printed reconstructions (n = 45) and the reference files from which they were printed underwent vFFR computation, and the results were compared. The average error in reconstructing minimum lumen diameter (MLD) was 0.05 (± 0.03 mm) which was
- Published
- 2021
- Full Text
- View/download PDF