1. Myocardial Perfusion Simulation for Coronary Artery Disease:A Coupled Patient-Specific Multiscale Model
- Author
-
Lazaros Papamanolis, Michiel Schaap, Charles A. Taylor, Ibrahim Danad, Matthew Sinclair, Hugues Talbot, Laurent Najman, Irene E. Vignon-Clementel, Paul Knaapen, Pepijn A. van Diemen, Clara Jaquet, Hyun Jin Kim, SImulations en Médecine, BIOtechnologie et ToXicologie de systèmes multicellulaires (SIMBIOTX ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), HeartFlow, Laboratoire d'Informatique Gaspard-Monge (LIGM), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Imperial College London, Amsterdam UMC, Centre de vision numérique (CVN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay, OPtimisation Imagerie et Santé (OPIS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay, Cardiology, ACS - Atherosclerosis & ischemic syndromes, ACS - Heart failure & arrhythmias, Amsterdam UMC - Amsterdam University Medical Center, CentraleSupélec, and Université Paris-Saclay
- Subjects
Patient-Specific Modeling ,medicine.medical_specialty ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Heart Ventricles ,0206 medical engineering ,Biomedical Engineering ,Hemodynamics ,02 engineering and technology ,030204 cardiovascular system & hematology ,Coronary artery disease ,03 medical and health sciences ,0302 clinical medicine ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,Arteriole ,medicine.artery ,Internal medicine ,Coronary Circulation ,Medicine ,Humans ,MBF (Myocardial Blood Flow) ,business.industry ,Myocardium ,PET perfusion map ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Heart ,Blood flow ,[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA] ,medicine.disease ,020601 biomedical engineering ,Coronary Vessels ,Coronary arteries ,Perfusion ,medicine.anatomical_structure ,Ventricle ,Cardiology ,Original Article ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Artery - Abstract
Patient-specific models of blood flow are being used clinically to diagnose and plan treatment for coronary artery disease. A remaining challenge is bridging scales from flow in arteries to the micro-circulation supplying the myocardium. Previously proposed models are descriptive rather than predictive and have not been applied to human data. The goal here is to develop a multiscale patient-specific model enabling blood flow simulation from large coronary arteries to myocardial tissue. Patient vasculatures are segmented from coronary computed tomography angiography data and extended from the image-based model down to the arteriole level using a space-filling forest of synthetic trees. Blood flow is modeled by coupling a 1D model of the coronary arteries to a single-compartment Darcy myocardium model. Simulated results on five patients with non-obstructive coronary artery disease compare overall well to [$$^{15}$$ 15 O]$$\text {H}_{{2}}$$ H 2 O PET exam data for both resting and hyperemic conditions. Results on a patient with severe obstructive disease link coronary artery narrowing with impaired myocardial blood flow, demonstrating the model’s ability to predict myocardial regions with perfusion deficit. This is the first report of a computational model for simulating blood flow from the epicardial coronary arteries to the left ventricle myocardium applied to and validated on human data.
- Published
- 2021