1. Optimising the mutation screening strategy in Marfan syndrome and identifying genotypes with more severe aortic involvement
- Author
-
Roland Stengl, András Bors, Bence Ágg, Miklós Pólos, Gabor Matyas, Mária Judit Molnár, Bálint Fekete, Dóra Csabán, Hajnalka Andrikovics, Béla Merkely, Tamás Radovits, Zoltán Szabolcs, and Kálmán Benke
- Subjects
Marfan syndrome ,Genetic testing ,Aortic involvement ,Risk stratification ,FBN1 ,Next-generation sequencing ,Medicine - Abstract
Abstract Background Marfan syndrome (MFS) is a systemic connective tissue disorder with life-threatening manifestations affecting the ascending aorta. MFS is caused by dominant negative (DN) and haploinsufficient (HI) mutations of the FBN1 gene. Our aim was to identify mutations of MFS patients with high detection rate and to investigate the use of a gene panel for patients with Marfanoid habitus. We also aimed to examine correlations between genotype and cardiovascular manifestations to predict “malignant” mutations. Methods 136 individuals were enrolled. In the first phase, next-generation sequencing (NGS) and Sanger sequencing were performed for 57 patients to screen the FBN1 gene, followed by multiplex ligation-dependent probe amplification (MLPA) in negative cases. For repeated negative results, NGS gene panel involving 9 genes was used. In the second phase, 79 patients were tested primarily with the same gene panel, negative samples were tested by MLPA. Results 84 pathogenic mutations were detected, out of which 78 affected FBN1, 6 non-FBN1 mutations (2 TGFB2, 1 TGFBR2, 2 TGFBR1, 1 SMAD3) are associated with Loeys-Dietz syndrome (LDS). LDS patients had lower systemic score and they were younger, but their aortic involvement did not differ. MLPA detected 4 multi-exon deletions of FBN1 gene, which could not be identified by our first-step screening method. Aortic involvement (aortic dissection and/or dilation) did not differ significantly among HI and DN mutations (p = 0.061). Combined group of HI and DN mutations eliminating a disulphide-bonding cysteine (DN Cys) had significantly higher aortic involvement rate than DN mutations not eliminating a disulphide-bonding cysteine (DN non-Cys) (p
- Published
- 2020
- Full Text
- View/download PDF