1. Design of the Artificial Acellular Feeder Layer for the Efficient Propagation of Mouse Embryonic Stem Cells
- Author
-
Yuko Hagiwara, Yuta Murakami, Toshihiro Akaike, Stephen A. Duncan, Keiko Takemura, Jixuan Li, and Masato Nagaoka
- Subjects
Pluripotent Stem Cells ,KOSR ,endocrine system ,Recombinant Fusion Proteins ,Cell ,Cell Culture Techniques ,Biology ,Leukemia Inhibitory Factor ,Biochemistry ,Cell Line ,Mice ,Molecular Basis of Cell and Developmental Biology ,medicine ,Animals ,Induced pluripotent stem cell ,Molecular Biology ,Embryonic Stem Cells ,reproductive and urinary physiology ,urogenital system ,Cell Biology ,Cadherins ,Embryonic stem cell ,Fusion protein ,Molecular biology ,Extracellular Matrix ,Cell biology ,medicine.anatomical_structure ,Cell culture ,embryonic structures ,Signal transduction ,Immunoglobulin Constant Regions ,Leukemia inhibitory factor ,hormones, hormone substitutes, and hormone antagonists ,Signal Transduction - Abstract
Embryonic stem (ES) cells are pluripotent-undifferentiated cells that have a great interest for the investigation of developmental biology. Murine ES cells maintain their pluripotency by the supplementation of the leukemia inhibitory factor (LIF). LIF is reported to act as a matrix-anchored form, and immobilized cytokines are useful to sustain their signaling on target cells. In this study, we used the immobilizable fusion protein composed of LIF and IgG-Fc region, which was used as a model of the matrix-anchored form of LIF to establish a novel system for ES cell culture and to investigate the effect of immobilized LIF on maintenance of ES cell pluripotency. Mouse ES cells maintained their undifferentiated state on the surface coated with LIF-Fc. Furthermore, when cultured on the co-immobilized surface with LIF-Fc and E-cadherin-Fc, mouse ES cells showed characteristic scattering morphologies without colony formation, and they could maintain their undifferentiated state and pluripotency without additional LIF supplementation. The activation of LIF signaling was sustained on the co-immobilized surface. These results indicate that immobilized LIF and E-cadherin can maintain mouse ES cells efficiently and that the immobilizable LIF-Fc fusion protein is useful for the investigation of signaling pathways of an immobilized form of LIF in the maintenance of ES cell pluripotency.
- Published
- 2008
- Full Text
- View/download PDF