1. Seasonal changes in kinetic parameters of trypsin in gastric and agastric fish
- Author
-
Eugene A. Rogozhin, Francisco Javier Moyano, Mikhail M. Solovyev, and E. N. Kashinskaya
- Subjects
Physiology ,Protein digestion ,Fish species ,Aquatic Science ,Biochemistry ,Чаны, озеро ,03 medical and health sciences ,Animal science ,Bacterial Proteins ,Endopeptidases ,medicine ,Animals ,Trypsin ,прусский карп ,трипсин ,030304 developmental biology ,Prussian carp ,0303 health sciences ,Perch ,biology ,Fishes ,cезонные изменения ,04 agricultural and veterinary sciences ,General Medicine ,biology.organism_classification ,Gastrointestinal Tract ,040102 fisheries ,Freshwater fish ,Carassius ,0401 agriculture, forestry, and fisheries ,%22">Fish ,Seasons ,окунь ,medicine.drug - Abstract
The objective of the present study was to assess if trypsin, a key enzyme involved in protein digestion, presents some kind of functional adaptations to seasonal changes in water temperature in freshwater fish. In order to test this hypothesis, individuals of two fish species Carassius gibelio (agastric) and Perca fluviatilis (gastric) were sampled in the basin of Chany Lake (Siberia, Russia) at two different seasons (spring and summer). Apparent kinetic parameters (Km and Vmax) were determined for both species and seasons at the actual pH values in fish guts, and at actual temperatures. Results showed a significant effect of both the species and sampling season on the apparent kinetic parameters of trypsin. In the case of Prussian carp, Km and Vmax were lower for each assayed temperature (for 5 and 15 °C the differences were significant) for fish sampled in summer when compared to those sampled in spring. In contrast, values of Km in perch tended to be lower in spring at 5 and 25 °C but these differences were not significant, while Vmax showed a significant decrease in summer samples. This suggests a sort of functional adaptation of the same trypsin enzymes to seasonal changes, oriented to maximize protein digestion under variable conditions.
- Published
- 2021
- Full Text
- View/download PDF