92 results on '"Fabienne Foufelle"'
Search Results
2. Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: a mechanistic insight.
- Author
-
Rana Mahfouz, Rhéa Khoury, Agnieszka Blachnio-Zabielska, Sophie Turban, Nicolas Loiseau, Christopher Lipina, Clare Stretton, Olivier Bourron, Pascal Ferré, Fabienne Foufelle, Harinder S Hundal, and Eric Hajduch
- Subjects
Medicine ,Science - Abstract
Ceramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies.
- Published
- 2014
- Full Text
- View/download PDF
3. Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.
- Author
-
Barbara D Pachikian, Ahmed Essaghir, Jean-Baptiste Demoulin, Audrey M Neyrinck, Emilie Catry, Fabienne C De Backer, Nicolas Dejeans, Evelyne M Dewulf, Florence M Sohet, Laurence Portois, Louise Deldicque, Olivier Molendi-Coste, Isabelle A Leclercq, Marc Francaux, Yvon A Carpentier, Fabienne Foufelle, Giulio G Muccioli, Patrice D Cani, and Nathalie M Delzenne
- Subjects
Medicine ,Science - Abstract
Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA) ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF) versus a control diet (CT), which only differed in the PUFA content. DEF mice exhibited hepatic insulin resistance (assessed by euglycemic-hyperinsulinemic clamp) and steatosis that was associated with a decrease in fatty acid oxidation and occurred despite a higher capacity for triglyceride secretion. Microarray and qPCR analysis of the liver tissue revealed higher expression of all the enzymes involved in lipogenesis in DEF mice compared to CT mice, as well as increased expression and activation of sterol regulatory element binding protein-1c (SREBP-1c). Our data suggest that the activation of the liver X receptor pathway is involved in the overexpression of SREBP-1c, and this phenomenon cannot be attributed to insulin or to endoplasmic reticulum stress responses. In conclusion, n-3 PUFA depletion in liver phospholipids leads to activation of SREBP-1c and lipogenesis, which contributes to hepatic steatosis.
- Published
- 2011
- Full Text
- View/download PDF
4. Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis
- Author
-
Pascal Roux, Virginie Escriou, Judith Aron-Wisnewsky, Nour El Houda Djerir, Christine Charrueau, Isabelle Brocheriou, Céline Hoffmann, Anne Danckaert, Karine Clément, Fabienne Foufelle, Anne-Marie Lachagès, Frédéric Charlotte, Vlad Ratziu, Julien Fernandes, Bernard Hainque, Pascal Bigey, Dominique Bonnefont-Rousselot, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS - UM 4 (UMR 8258 / U1022)), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Institut Pasteur [Paris], Service d'Anatomie et cytologie pathologiques [CHU Pitié-Salpêtrière] (ACP), CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de Nutrition [CHU Pitié-Salpétrière], Institut E3M [CHU Pitié-Salpêtrière], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Service de Biochimie Métabolique [CHU Pitié-Salpêtrière], Université Paris sciences et lettres (PSL), This work was supported by the Agence Nationale de la Recherche (ANR, ANR Fibrother ANR-18-CE18-0005-01 to C.H.). The UtechS PBI (A.D., J.F., and P.R.) is part of the France BioImaging infrastructure supported by the French National Research Agency (ANR-10-INSB-04-01, 'Investments for the future'). Funding for patient’s recruitment (K.C.) was obtained by the Clinical Research Contrat (CRC-Fibrota)., ANR-18-CE18-0005,FIBROTHER,Nanovecteurs polyvalents pour la thérapie de la fibrose hépatique(2018), ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Technologie et Service BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Centre de Ressources et de Recherche Technologique - Center for Technological Resources and Research (C2RT), Institut Pasteur [Paris]-Institut Pasteur [Paris], Service d’anatomie et cytologie pathologiques [CHU Pitié-Salpêtrière], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Pitié-Salpêtrière [APHP], Service de nutrition [CHU Pitié-Salpétrière], École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP), ANR-18-CE18-0005,FIBROTHER,MULTIPLEXED NANOVECTORS FOR METABOLIC LIVER FIBROSIS THERAPY(2018), ANR-10-INBS-04-01/10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Nutrition et obésités: approches systémiques (UMR-S 1269) (Nutriomics), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), École Pratique des Hautes Études (EPHE), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut de Cardiométabolisme et Nutrition = Institute of Cardiometabolism and Nutrition [CHU Pitié Salpêtrière] (IHU ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-CHU Pitié-Salpêtrière [AP-HP], Service d'Anatomie et cytologie pathologiques = Service de Pathologie [CHU Pitié-Salpêtrière] (ACP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Bodescot, Myriam, APPEL À PROJETS GÉNÉRIQUE 2018 - Nanovecteurs polyvalents pour la thérapie de la fibrose hépatique - - FIBROTHER2018 - ANR-18-CE18-0005 - AAPG2018 - VALID, Développment d'une infrastructure française distribuée coordonnée - - France-BioImaging2010 - ANR-10-INBS-0004 - INBS - VALID, and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP]
- Subjects
0301 basic medicine ,Liver Cirrhosis ,Male ,Pathology ,medicine.medical_specialty ,Liver fibrosis ,lcsh:Medicine ,Context (language use) ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Chronic liver disease ,Article ,Muscle hypertrophy ,03 medical and health sciences ,Liver disease ,Mice ,0302 clinical medicine ,Fibrosis ,Hepatic stellate cells ,medicine ,Animals ,Humans ,lcsh:Science ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,Non-alcoholic steatohepatitis ,Multidisciplinary ,business.industry ,Carbon Tetrachloride Poisoning ,lcsh:R ,[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology ,medicine.disease ,Dietary Fats ,[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology ,3. Good health ,030104 developmental biology ,030220 oncology & carcinogenesis ,Hepatic stellate cell ,lcsh:Q ,Steatohepatitis ,business ,Hepatic fibrosis - Abstract
Hepatic fibrosis is a major consequence of chronic liver disease such as non-alcoholic steatohepatitis which is undergoing a dramatic evolution given the obesity progression worldwide, and has no treatment to date. Hepatic stellate cells (HSCs) play a key role in the fibrosis process, because in chronic liver damage, they transdifferentiate from a “quiescent” to an “activated” phenotype responsible for most the collagen deposition in liver tissue. Here, using a diet-induced liver fibrosis murine model (choline-deficient amino acid-defined, high fat diet), we characterized a specific population of HSCs organized as clusters presenting simultaneously hypertrophy of retinoid droplets, quiescent and activated HSC markers. We showed that hypertrophied HSCs co-localized with fibrosis areas in space and time. Importantly, we reported the existence of this phenotype and its association with collagen deposition in three other mouse fibrosis models, including CCl4-induced fibrosis model. Moreover, we have also shown its relevance in human liver fibrosis associated with different etiologies (obesity, non-alcoholic steatohepatitis, viral hepatitis C and alcoholism). In particular, we have demonstrated a significant positive correlation between the stage of liver fibrosis and HSC hypertrophy in a cohort of obese patients with hepatic fibrosis. These results lead us to conclude that hypertrophied HSCs are closely associated with hepatic fibrosis in a metabolic disease context and may represent a new marker of metabolic liver disease progression.
- Published
- 2020
5. Stress du réticulum endoplasmique et stéatopathies métaboliques
- Author
-
Alexandra Papaioannou, Floriane Lachkar, Pascal Ferré, and Fabienne Foufelle
- Subjects
0301 basic medicine ,Cirrhosis ,business.industry ,Endoplasmic reticulum ,Fatty liver ,Inflammation ,medicine.disease ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,medicine.anatomical_structure ,Hepatocyte ,Unfolded protein response ,Cancer research ,Medicine ,030211 gastroenterology & hepatology ,Steatosis ,Steatohepatitis ,medicine.symptom ,business - Abstract
Les stéatopathies métaboliques sont des pathologies en pleine expansion car très associées à l’obésité. Elles englobent un éventail de troubles hépatiques allant de la stéatose à la stéatohépatite non alcoolique (NASH) pouvant conduire à la cirrhose et au carcinome hépatocellulaire (CHC). Le stress du réticulum endoplasmique (RE), à travers l’activation de la voie UPR (Unfolded Protein Response), a été largement impliqué dans le développement et la progression de ces maladies métaboliques hépatiques. Alors que l’activation transitoire de la voie UPR fait partie intégrante de la physiologie hépatique, son activation chronique contribue à la stimulation de voies métaboliques et cellulaires (synthèse des lipides, inflammation, apoptose) qui sont déterminantes dans la progression vers des stades sévères. Le but de cette revue est de décrire comment la voie UPR participe au passage d’un foie sain à un foie malade au cours de l’obésité et d’analyser les perspectives thérapeutiques liées à la manipulation pharmacologique de cette voie.
- Published
- 2020
6. Roles of Ceramides in Non-Alcoholic Fatty Liver Disease
- Author
-
Floriane Lachkar, Pascal Ferré, Eric Hajduch, Fabienne Foufelle, Gestionnaire, HAL Sorbonne Université 5, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut de Cardiométabolisme et Nutrition = Institute of Cardiometabolism and Nutrition [CHU Pitié Salpêtrière] (IHU ICAN), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], and Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
- Subjects
medicine.medical_specialty ,Ceramide ,Cirrhosis ,Population ,lcsh:Medicine ,030209 endocrinology & metabolism ,Review ,liver ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Internal medicine ,NAFLD ,medicine ,steatosis ,ceramide ,education ,030304 developmental biology ,0303 health sciences ,education.field_of_study ,sphingolipids ,business.industry ,Fatty liver ,lcsh:R ,NASH ,General Medicine ,medicine.disease ,Sphingolipid ,3. Good health ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,Endocrinology ,chemistry ,Lipotoxicity ,Steatosis ,Steatohepatitis ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition - Abstract
International audience; Non-alcoholic fatty liver disease is one of the most common chronic liver diseases, ranging from simple steatosis to steatohepatitis, fibrosis, and cirrhosis. Its prevalence is rapidly increasing and presently affects around 25% of the general population of Western countries, due to the obesity epidemic. Liver fat accumulation induces the synthesis of specific lipid species and particularly ceramides, a sphingolipid. In turn, ceramides have deleterious effects on hepatic metabolism, a phenomenon called lipotoxicity. We review here the evidence showing the role of ceramides in non-alcoholic fatty liver disease and the mechanisms underlying their effects.
- Published
- 2021
7. Adipocyte-Mineralocorticoid Receptor Alters Mitochondrial Quality Control Leading to Mitochondrial Dysfunction and Senescence of Visceral Adipose Tissue
- Author
-
Clara Lefranc, Malou Friederich-Persson, Frederic Jaisser, Aurelie Nguyen Dinh Cat, and Fabienne Foufelle
- Subjects
0301 basic medicine ,senescence ,Adipose tissue ,medicine.disease_cause ,Mitochondrial Dynamics ,lcsh:Chemistry ,Mice ,chemistry.chemical_compound ,0302 clinical medicine ,Mineralocorticoid receptor ,Adipocyte ,Adipocytes ,oxidative stress ,lcsh:QH301-705.5 ,Cellular Senescence ,Spectroscopy ,Biochemistry and Molecular Biology ,General Medicine ,Mitochondria ,Computer Science Applications ,adipose tissue ,Senescence ,medicine.medical_specialty ,030209 endocrinology & metabolism ,Intra-Abdominal Fat ,Biology ,Article ,Catalysis ,metabolic syndrome ,Inorganic Chemistry ,03 medical and health sciences ,3T3-L1 Cells ,Internal medicine ,mitochondrial dysfunction ,medicine ,Animals ,Humans ,Obesity ,Physical and Theoretical Chemistry ,Molecular Biology ,mineralocorticoid receptor ,Regeneration (biology) ,Organic Chemistry ,medicine.disease ,Receptors, Mineralocorticoid ,030104 developmental biology ,Endocrinology ,lcsh:Biology (General) ,lcsh:QD1-999 ,chemistry ,Ageing ,Metabolic syndrome ,Oxidative stress ,Biokemi och molekylärbiologi - Abstract
Mineralocorticoid receptor (MR) expression is increased in the adipose tissue (AT) of obese patients and animals. We previously demonstrated that adipocyte-MR overexpression in mice (Adipo-MROE mice) is associated with metabolic alterations. Moreover, we showed that MR regulates mitochondrial dysfunction and cellular senescence in the visceral AT of obese db/db mice. Our hypothesis is that adipocyte-MR overactivation triggers mitochondrial dysfunction and cellular senescence, through increased mitochondrial oxidative stress (OS). Using the Adipo-MROE mice with conditional adipocyte-MR expression, we evaluated the specific effects of adipocyte-MR on global and mitochondrial OS, as well as on OS-induced damage. Mitochondrial function was assessed by high throughput respirometry. Molecular mechanisms were probed in AT focusing on mitochondrial quality control and senescence markers. Adipo-MROE mice exhibited increased mitochondrial OS and altered mitochondrial respiration, associated with reduced biogenesis and increased fission. This was associated with OS-induced DNA-damage and AT premature senescence. In conclusion, targeted adipocyte-MR overexpression leads to an imbalance in mitochondrial dynamics and regeneration, to mitochondrial dysfunction and to ageing in visceral AT. These data bring new insights into the MR-dependent AT dysfunction in obesity.
- Published
- 2021
8. Dihydroceramides: Their emerging physiological roles and functions in cancer and metabolic diseases
- Author
-
Floriane Lachkar, Pascal Ferré, Alexandra Papaioannou, Fabienne Foufelle, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), FERRE, Pascal, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)
- Subjects
0301 basic medicine ,medicine.medical_specialty ,autophagy ,obesity ,Physiology ,Endocrinology, Diabetes and Metabolism ,[SDV]Life Sciences [q-bio] ,Type 2 diabetes ,Biology ,Bioinformatics ,Ceramides ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,Metabolic Diseases ,Physiology (medical) ,Internal medicine ,Neoplasms ,medicine ,Animals ,Humans ,cancer ,sphingolipids ,diabetes ,Cell growth ,Autophagy ,Cancer ,medicine.disease ,Sphingolipid ,3. Good health ,Sphingolipid synthesis ,[SDV] Life Sciences [q-bio] ,030104 developmental biology ,Endocrinology ,030220 oncology & carcinogenesis ,Potential biomarkers - Abstract
Dihydroceramides (DhCers) are a type of sphingolipids that for a long time were regarded as biologically inactive. They are metabolic intermediates of the de novo sphingolipid synthesis pathway, and are converted into ceramides (Cers) with the addition of a double bond. Ceramides are abundant in tissues and have well-established biological functions. On the contrary, dihydroceramides are less prevalent, and despite their hitherto characterization as inert lipids, studies of the past decade began to unravel their implication in various biological processes distinct from those involving ceramides. These processes include cellular stress responses and autophagy, cell growth, pro-death or pro-survival pathways, hypoxia, and immune responses. In addition, their plasma concentration has been related to metabolic diseases and shown as a long-term predictor of type 2 diabetes onset. They are thus important players and potential biomarkers in pathologies ranging from diabetes to cancer and neurodegenerative diseases. The purpose of this mini-review is to highlight the emergence of dihydroceramides as a new class of bioactive sphingolipids by reporting recent advances on their biological characterization and pathological implications, focusing on cancer and metabolic diseases.
- Published
- 2020
9. Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α
- Author
-
Sylvie Prigent, Fabienne Foufelle, Jessica Zucman-Rossi, Marco Pontoglio, Magali Chiral, Sandra Rebouissou, Stefano Caruso, Eric Chevet, Laure Villemain, Aurélie Abou-Lovergne, Laura Pelletier, Laurent Combettes, Raphael Pineau, UMR-S1174, Institut National de la Santé et de la Recherche Médicale (INSERM), Intéractions cellulaires et physiopathologie hépathique (Orsay, Essonne) UMRS 1174 (ICPH ), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Chemistry, Oncogenesis, Stress and Signaling (COSS), Université de Rennes (UR)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), CRLCC Eugène Marquis (CRLCC), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), R16173CC, Fondation ARC pour la Recherche sur le Cancer, R17167CC and R18159CC, Ligue Nationale contre le Cancer, INCA_7981, Institut National Du Cancer, École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de la Santé et de la Recherche Médicale (INSERM)-CRLCC Eugène Marquis (CRLCC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), and Jonchère, Laurent
- Subjects
0301 basic medicine ,Cancer Research ,liver tumor ,Liver tumor ,medicine.drug_class ,proliferation ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,lcsh:RC254-282 ,Article ,03 medical and health sciences ,0302 clinical medicine ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Lipid droplet ,medicine ,hepatocyte ,steatosis ,Sigma-1 receptor ,Hepatocellular adenoma ,medicine.disease ,lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,digestive system diseases ,3. Good health ,030104 developmental biology ,medicine.anatomical_structure ,Oncology ,Nuclear receptor ,Estrogen ,030220 oncology & carcinogenesis ,Hepatocyte ,Knockout mouse ,Cancer research - Abstract
Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1&alpha, on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ER&alpha, HNF1&alpha, mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.
- Published
- 2020
10. Rapid glycemic regulation in poorly controlled patients living with diabetes, a new associated factor in the pathophysiology of Charcot's acute neuroarthropathy
- Author
-
Frederic Jaisser, Jocelyne M’Bemba, Agnès Hartemann, Jean-Michel Davaine, Franck Phan, Olivier Bourron, Georges Ha Van, Francois-Xavier Laborne, Dured Dardari, Fabienne Foufelle, Alfred Penfornis, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Service de Diabétologie [CHU Pitié-Salpétrière], CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Hôpital Cochin [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de Chirurgie cardiaque et thoracique [CHU Pitié-Salpêtrière], Université Paris-Sud - Paris 11 - Faculté de médecine (UP11 UFR Médecine), Université Paris-Sud - Paris 11 (UP11), and Service de diabétologie [CHU Pitié-Salpétrière]
- Subjects
Male ,Diabetic neuropathy ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Gastroenterology ,Biochemistry ,Diagnostic Radiology ,0302 clinical medicine ,Endocrinology ,Skeletal Joints ,Active phase ,Diabetes diagnosis and management ,Diabetic Nephropathies ,030212 general & internal medicine ,Musculoskeletal System ,Multidisciplinary ,Radiology and Imaging ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,Middle Aged ,Magnetic Resonance Imaging ,Pathophysiology ,3. Good health ,Neurology ,Medicine ,Female ,Anatomy ,Research Article ,medicine.medical_specialty ,congenital, hereditary, and neonatal diseases and abnormalities ,HbA1c ,Endocrine Disorders ,Imaging Techniques ,Science ,030209 endocrinology & metabolism ,Research and Analysis Methods ,03 medical and health sciences ,Hba1c level ,Diabetes mellitus ,Internal medicine ,medicine ,Diabetes Mellitus ,Humans ,Hypoglycemic Agents ,Hemoglobin ,Glycemic ,Aged ,Retrospective Studies ,Glycated Hemoglobin ,Medicine and health sciences ,Biology and life sciences ,business.industry ,Amyotrophic Lateral Sclerosis ,Proteins ,Retrospective cohort study ,medicine.disease ,Charcot neuroarthropathy ,Diagnostic medicine ,Neuropathy ,Metabolic Disorders ,business - Abstract
International audience; Objective: Aggressive antidiabetic therapy and rapid glycemic control are associated with diabetic neuropathy. Here we investigated if this is also the case for Charcot neuroarthropathy.Research design and methods: HbA1c levels and other relevant data were extracted from medical databases of 44 cases of acute Charcot neuroarthropathy.Results: HbA1c levels significantly declined from 8.25% (67mmol/mol) [7.1%-9.4%](54-79mmol/mol), at -6 months (M-6), to 7.40%(54mmol/mol) [6.70%-8.03%] (50-64 mmol/mol) during the six months preceding the diagnosis of Charcot neuroarthropathy (P
- Published
- 2020
11. Coordinated regulation of hepatic FoxO1, PGC-1α and SREBP-1c facilitates insulin action and resistance
- Author
-
Courtney Cleland, Mini P. Sajan, Fabienne Foufelle, Joshua Sajan, Robert V. Farese, and Mackenzie C. Lee
- Subjects
Male ,0301 basic medicine ,medicine.medical_treatment ,FOXO1 ,Hyperinsulinemia ,Homeostasis ,Insulin ,Phosphorylation ,Protein Kinase C ,Genes, Dominant ,Forkhead Box Protein O1 ,Chemistry ,Middle Aged ,Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ,Metformin ,Isoenzymes ,Liver ,Female ,Signal transduction ,Sterol Regulatory Element Binding Protein 1 ,Signal Transduction ,Adult ,endocrine system ,medicine.medical_specialty ,Cyclopentanes ,Carbohydrate metabolism ,Diet, High-Fat ,Models, Biological ,03 medical and health sciences ,Insulin resistance ,Thinness ,Internal medicine ,medicine ,Animals ,Humans ,Protein kinase B ,Aged ,Lipogenesis ,Cell Biology ,medicine.disease ,Mice, Inbred C57BL ,Glucose ,030104 developmental biology ,Endocrinology ,Diabetes Mellitus, Type 2 ,Hepatocytes ,Insulin Resistance ,Proto-Oncogene Proteins c-akt - Abstract
Type 2 diabetes is characterized by insulin resistance, hyperinsulinemia and hepatic overproduction of glucose and lipids. Insulin increases lipogenic enzyme expression by activating Akt and aPKC which activate SREBP-1c; this pathway is hyperactivated in insulin-resistant states. Insulin suppresses gluconeogenic enzyme expression by Akt-dependent phosphorylation/inactivation of FoxO1 and PGC-1α; this pathway is impaired in insulin-resistant states by aPKC excess, which displaces Akt from scaffolding-protein WD40/ProF, where Akt phosphorylates/inhibits FoxO1. But how PGC-1α and FoxO1 are coordinated in insulin action and resistance is uncertain. Here, in normal mice, we found, along with Akt and aPKC, insulin increased PGC-1α association with WD40/ProF by an aPKC-dependent mechanism. However, in insulin-resistant high-fat-fed mice, like FoxO1, PGC-1α phosphorylation was impaired by aPKC-mediated displacement of Akt from WD40/ProF, as aPKC inhibition diminished its association with WD40/ProF, and simultaneously restored Akt association with WD40/ProF and phosphorylation/inhibition of both PGC-1α and FoxO1. Moreover, in high-fat-fed mice, in addition to activity, PGC-1α expression was increased, not only by FoxO1 activation, but also, as found in human hepatocytes, by a mechanism requiring aPKC and SREBP-1c, which also increased expression and activity of PKC-ι. In high-fat-fed mice, inhibition of hepatic aPKC, not only restored Akt association with WD40/ProF and FoxO1/PGC-1α phosphorylation, but also diminished expression of SREBP-1c, PGC-1α, PKC-ι and gluconeogenic and lipogenic enzymes, and corrected glucose intolerance and hyperlipidemia. Conclusion: Insulin suppression of gluconeogenic enzyme expression is facilitated by coordinated inactivation of FoxO1 and PGC-1α by WD40/ProF-associated Akt; but this coordination also increases vulnerability to aPKC hyperactivity, which is abetted by SREBP-1c-induced increases in PGC-1α and PKC-ι.
- Published
- 2018
12. Steatosis and NASH in type 2 diabetes
- Author
-
Pascal Ferré, Franck Phan, Mengyue Hu, Fabienne Foufelle, and Olivier Bourron
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Cirrhosis ,Type 2 diabetes ,Chronic liver disease ,Bioinformatics ,digestive system ,Biochemistry ,Hepatitis ,03 medical and health sciences ,0302 clinical medicine ,Insulin resistance ,Non-alcoholic Fatty Liver Disease ,Risk Factors ,Internal medicine ,medicine ,Humans ,business.industry ,Fatty liver ,nutritional and metabolic diseases ,General Medicine ,medicine.disease ,digestive system diseases ,030104 developmental biology ,Endocrinology ,Diabetes Mellitus, Type 2 ,Lipotoxicity ,030211 gastroenterology & hepatology ,Insulin Resistance ,Steatosis ,Steatohepatitis ,business - Abstract
Non Alcoholic Fatty Liver Disease (NAFLD) is currently the most common chronic liver disease in the world, encompassing various conditions ranging from simple steatosis, steatohepatitis, to fibrosis and cirrhosis. The association between NAFLD and Type 2 Diabetes (T2D) is strong and complex, given that the prevalence of NAFLD is particularly high in individuals with Type 2 Diabetes. In fact, insulin resistance occurring in this metabolic disease can promote NAFLD development, and vice versa, NAFLD can enhance insulin resistance. In this review, we focus on the mechanisms linking NAFLD and T2D, including fatty acid accumulation, inflammation, oxidative stress etc. We also discuss about situations showing a dissociation between steatosis and insulin resistance, in order to provide new insights for NAFLD therapeutic targets.
- Published
- 2017
13. High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil
- Author
-
Isabelle Hainault, N. Semiane, Fabienne Foufelle, Ali Khalkhal, Pascal Ferré, A. Mallek, Souad Ameddah, and Y. Dahmani
- Subjects
Male ,0301 basic medicine ,medicine.medical_specialty ,Gerbil ,medicine.disease_cause ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,0302 clinical medicine ,Insulin resistance ,Non-alcoholic Fatty Liver Disease ,Fibrosis ,Internal medicine ,Nonalcoholic fatty liver disease ,Dietary Carbohydrates ,medicine ,Animals ,Adiposity ,Dyslipidemias ,Hepatitis ,General Immunology and Microbiology ,biology ,Lipogenesis ,Body Weight ,Organ Size ,General Medicine ,Endoplasmic Reticulum Stress ,biology.organism_classification ,medicine.disease ,Gerbillus ,Diet ,Oxidative Stress ,030104 developmental biology ,Endocrinology ,Liver ,Female ,030211 gastroenterology & hepatology ,Lipid Peroxidation ,Insulin Resistance ,Gerbillinae ,General Agricultural and Biological Sciences ,Dyslipidemia ,Oxidative stress - Abstract
A high intake of sugars has been linked to diet-induced health problems. The aim of this study was to assess whether the long-term consumption of a high-carbohydrate diet (HCD) would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH) in a desert gerbil, Gerbillus gerbillus. Compared to natural diet, HCD leads to several metabolic disorders including adiposity, dyslipidemia, insulin resistance, ectopic fat deposition in the liver, which were associated with higher levels of transcripts of genes involved with fat synthesis, endoplasmic reticulum (ER) stress, and fibrosis. In the same way, the experimented animals showed enhanced oxidative stress. Taken together, these results demonstrate that HCD consumption in gerbils induces metabolic disorders and damaged liver, which are key contributors to NASH development. These results suggest that this rodent represents a valuable natural model for human diet-induced metabolic disorders and nonalcoholic fatty liver disease (NAFLD).
- Published
- 2017
14. Multifocal (tarsus and knee) activation of neuroarthropathy following rapid glycaemic correction
- Author
-
Jean-Michel Davaine, Franck Phan, Agnès Hartemann, Frederic Jaisser, Fabienne Foufelle, Dured Dardari, Coralie Amadou, Alfred Penfornis, Francois-Xavier Laborne, and Olivier Bourron
- Subjects
Chronic hyperglycaemia ,Adult ,medicine.medical_specialty ,Time Factors ,Knee Joint ,Endocrinology, Diabetes and Metabolism ,Pregnancy in Diabetics ,030209 endocrinology & metabolism ,Glycemic Control ,030204 cardiovascular system & hematology ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Diabetic Neuropathies ,Pregnancy ,Diabetes mellitus ,Female patient ,Internal Medicine ,Medicine ,Humans ,Retrospective Studies ,Retrospective review ,business.industry ,medicine.disease ,Charcot neuroarthropathy ,Surgery ,Pregnancy Complications ,Tibial Fractures ,medicine.anatomical_structure ,Diabetes Mellitus, Type 1 ,Tarsus (skeleton) ,Acute Disease ,Type i diabetes ,Case note ,Female ,Arthropathy, Neurogenic ,business ,Ankle Joint - Abstract
Objective To report a case of neuroarthropathy in the tarsus and knee following rapid glycaemic normalisation in a female patient with type I diabetes. Methods A retrospective review of case notes. Results We describe the case of a female patient with type I diabetes who had developed a multifocal neuroarthropathy in only six months, probably due to a rapid glycaemic normalisation. The onset of this neuroarthropathy was not only fast but mostly multifocal affecting two levels of joints. Conclusion The link between the onset of multifocal neuroarthropathy and the rapid correction of chronic hyperglycaemia is probably proven in our case. Patients with chronic hyperglycaemia with sensitive neuropathy should benefit from a gradual correction of their glycaemic imbalance in order to avoid the apparition of neuroarthropathy.
- Published
- 2019
15. Endoplasmic reticulum proteostasis in hepatic steatosis
- Author
-
Marie Lagouge, Pierre Mesdom, Fabienne Foufelle, and Andrei Baiceanu
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Cirrhosis ,Endocrinology, Diabetes and Metabolism ,Endoplasmic Reticulum ,03 medical and health sciences ,Endocrinology ,Insulin resistance ,Internal medicine ,Nonalcoholic fatty liver disease ,Autophagy ,medicine ,Homeostasis ,Humans ,Obesity ,Triglycerides ,Organelles ,business.industry ,Endoplasmic reticulum ,Fatty liver ,Proteins ,Endoplasmic Reticulum-Associated Degradation ,Endoplasmic Reticulum Stress ,Lipid Metabolism ,medicine.disease ,Fatty Liver ,030104 developmental biology ,Proteostasis ,Diabetes Mellitus, Type 2 ,Liver ,Hepatocytes ,Unfolded Protein Response ,Unfolded protein response ,Insulin Resistance ,Steatosis ,business - Abstract
Hepatic steatosis, the first step in the progression of nonalcoholic fatty liver disease, is characterized by triglyceride accumulation in hepatocytes and is highly prevalent in people with obesity. Although initially asymptomatic, hepatic steatosis is an important risk factor for the development of hepatic insulin resistance and type 2 diabetes mellitus and can also progress to more severe pathologies such as nonalcoholic steatohepatitis, liver fibrosis and cirrhosis; hepatic steatosis has, therefore, received considerable research interest in the past 20 years. The lipid accumulation that defines hepatic steatosis disturbs the function of the endoplasmic reticulum (ER) in hepatocytes, thereby generating chronic ER stress that interferes with normal cellular function. Although ubiquitous stress response mechanisms (namely, ER-associated degradation, unfolded protein response and autophagy) are the main processes for restoring cellular proteostasis, these mechanisms are unable to alleviate ER stress in the context of the fatty liver. Furthermore, ER stress and ER stress responses can promote lipid accumulation in hepatocytes in a counter-productive manner and could, therefore, be the origin of a vicious pathological cycle.
- Published
- 2016
16. Publisher Correction: Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women
- Author
-
Julie Charpentier, Ottavia Porzio, Josep Puig, Matteo Serino, Iris Cardolini, Richard H. Barton, Fabienne Foufelle, Marina Cardellini, Fadila Benhamed, José Manuel Fernández-Real, Massimo Federici, Marc-Emmanuel Dumas, Mark Woodbridge, Jeremy K. Nicholson, Julien Chilloux, Antonis Myridakis, Wifredo Ricart, Vincent Blasco-Baque, Paolo Gentileschi, Christopher Tomlinson, Christophe Heymes, Francesca Davato, Elaine Holmes, José María Moreno-Navarrete, Sarah Butcher, Gemma Xifra, Jèssica Latorre Luque, Rémy Burcelin, Lesley Hoyles, Catherine Postic, Vincent Azalbert, Elodie Anthony, Laura Martinez-Gili, James Abbott, Frédéric Lopez, Imperial College London, University Hospital of Girona, University of Rome 'Tor Vergeta', Università degli Studi di Roma Tor Vergata [Roma], Institut de médecine moléculaire de Rangueil (I2MR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées- Institut Fédératif de Recherche Bio-médicale Institution (IFR150)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Embryology and Histopathology, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Cardiff Business School, Cardiff University, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IFR150-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
- Subjects
0301 basic medicine ,business.industry ,Published Erratum ,[SDV]Life Sciences [q-bio] ,MEDLINE ,General Medicine ,Bioinformatics ,medicine.disease ,General Biochemistry, Genetics and Molecular Biology ,3. Good health ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,Phenomics ,Metagenomics ,030220 oncology & carcinogenesis ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Medicine ,Steatosis ,business ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,ComputingMilieux_MISCELLANEOUS ,Non diabetic - Abstract
In the version of this article originally published, the received date was missing. It should have been listed as 2 January 2018. The error has been corrected in the HTML and PDF versions of this article.
- Published
- 2018
17. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women
- Author
-
Jèssica Latorre Luque, Marina Cardellini, Marc-Emmanuel Dumas, Gemma Xifra, Francesca Davato, Josep Puig, Vincent Blasco-Baque, Iris Cardolini, Elodie Anthony, José Manuel Fernández-Real, Fadila Benhamed, Laura Martinez-Gili, Massimo Federici, Rémy Burcelin, Wifredo Ricart, Lesley Hoyles, Julie Charpentier, Catherine Postic, Richard H. Barton, Frédéric Lopez, José María Moreno-Navarrete, Sarah Butcher, Antonis Myridakis, Matteo Serino, James Abbott, Fabienne Foufelle, Vincent Azalbert, Paolo Gentileschi, Christopher Tomlinson, Julien Chilloux, Christophe Heymes, Mark Woodbridge, Elaine Holmes, Ottavia Porzio, Jeremy K. Nicholson, Commission of the European Communities, Medical Research Council (MRC), Imperial College London, Instituto de Salud Carlos III [Madrid] (ISC), University of Rome 'Tor Vergeta', Institut de médecine moléculaire de Rangueil (I2MR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IFR150-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Cardiff Business School, Cardiff University, University of Rome TorVergata, Bambino Gesù Children’s Hospital [Rome, Italy], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Department of Embryology and Histopathology, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Nutrition et cerveau (U1213, U855), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Section of Diabetes, Endocrinology and Nutrition, University Hospital of Girona-Biomedical Research Institute 'Dr Josep Trueta'-CIBERobn Fisiopatología de la Obesidad y Nutrición, Department d'enginyeria quimica agraria i tecnologia agroalimentaria, Universitat de Girona (UdG), Hosp Josep Trueta, Inst Invest Biomed Girona, Dept Diabet Endocrinol & Nutr, Institut Català de la Salut (ICS), Università degli Studi di Roma Tor Vergata [Roma], Centre de Recherches en Cancérologie de Toulouse (CRCT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institute of Biotechnology, [Institut Cochin] Département Endocrinologie, métabolisme, diabète (EMD) (EMD), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Biomolecular Medicine, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées- Institut Fédératif de Recherche Bio-médicale Institution (IFR150)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,Settore MED/09 - Medicina Interna ,IMPACT ,[SDV]Life Sciences [q-bio] ,Physiology ,Research & Experimental Medicine ,PHENOTYPE ,GLUCOSE ,Transcriptome ,Cohort Studies ,Diabetes mellitus genetics ,Mice ,Non-alcoholic Fatty Liver Disease ,Settore MED/49 - Scienze Tecniche Dietetiche Applicate ,ComputingMilieux_MISCELLANEOUS ,Cells, Cultured ,11 Medical and Health Sciences ,INSULIN-RESISTANCE ,Settore BIO/12 ,Microbiota ,Fatty liver ,Confounding Factors, Epidemiologic ,General Medicine ,ASSOCIATION ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,Fecal Microbiota Transplantation ,3. Good health ,Medicine, Research & Experimental ,CARDIOVASCULAR-DISEASE ,Metabolome ,Female ,Life Sciences & Biomedicine ,Biochemistry & Molecular Biology ,HUMAN GUT MICROBIOME ,Immunology ,Biology ,Phenome ,METABOLISM ,Article ,General Biochemistry, Genetics and Molecular Biology ,DIET ,03 medical and health sciences ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,medicine ,Diabetes Mellitus ,[CHIM]Chemical Sciences ,Animals ,Humans ,Metabolomics ,Microbiome ,Obesity ,FATTY LIVER-DISEASE ,Science & Technology ,Cell Biology ,medicine.disease ,Confounding Factors (Epidemiology) ,Settore MED/18 ,Fatty Liver ,Settore MED/18 - Chirurgia Generale ,030104 developmental biology ,Metagenomics ,Hepatocytes ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Steatosis - Abstract
Hepatic steatosis is a multifactorial condition that is often observed in obese patients and is a prelude to non-alcoholic fatty liver disease. Here, we combine shotgun sequencing of fecal metagenomes with molecular phenomics (hepatic transcriptome and plasma and urine metabolomes) in two well-characterized cohorts of morbidly obese women recruited to the FLORINASH study. We reveal molecular networks linking the gut microbiome and the host phenome to hepatic steatosis. Patients with steatosis have low microbial gene richness and increased genetic potential for the processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid metabolism. We demonstrated that fecal microbiota transplants and chronic treatment with phenylacetic acid, a microbial product of aromatic amino acid metabolism, successfully trigger steatosis and branched-chain amino acid metabolism. Molecular phenomic signatures were predictive (area under the curve = 87%) and consistent with the gut microbiome having an effect on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies. Metabolic activity of specific human gut microorganisms contributes to liver steatosis in obese women.
- Published
- 2018
18. Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions
- Author
-
Erwann Philippe, Athanassia Sotiropoulos, Hervé Le Stunff, Agnieszka Blachnio-Zabielska, Julien Véret, Paola Giussani, Fabienne Foufelle, Cécile L Bandet, Maxime Poirier, Xavier Le Liepvre, Olivier Bourron, Pascal Ferré, Eric Hajduch, Raphaëlle Ballaire, Jan Górski, Dušan Berkeš, Rana Mahfouz, Mélanie Campana, Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU), Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Diderot - Paris 7 (UPD7), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Pathogenèse cellulaire et clinique du diabète (CRC - Inserm U1138), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Université Paris Diderot, Sorbonne Paris Cité, Paris, France, Nutrition, diabète et cerveau, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Bialystok Med Univ, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Institut National de la Recherche Agronomique (INRA)-Université Francois Rabelais [Tours], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Service de diabétologie [CHU Pitié-Salpétrière], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Pitié-Salpêtrière [APHP], Slovak University of Technology in Bratislava, Department of Physiology, Medical University of Bialystok, Pathologies nutritionnelles et métaboliques : obésité et diabète, Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR58-Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Centre de Recherche des Cordeliers (CRC (UMR_S 872)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut de Cardiométabolisme et Nutrition = Institute of Cardiometabolism and Nutrition [CHU Pitié Salpêtrière] (IHU ICAN), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Medical University of Białystok (MUB), Service de Diabétologie [CHU Pitié-Salpétrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Hajduch, Eric, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Université Paris Descartes - Paris 5 (UPD5)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
- Subjects
0301 basic medicine ,Adult ,Male ,Ceramide ,Endocrinology, Diabetes and Metabolism ,medicine.medical_treatment ,Golgi Apparatus ,Mice, Transgenic ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Protein Serine-Threonine Kinases ,Ceramides ,Endoplasmic Reticulum ,03 medical and health sciences ,chemistry.chemical_compound ,Mice ,Insulin resistance ,Internal Medicine ,medicine ,[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Myocyte ,Animals ,Humans ,Insulin ,Cells, Cultured ,ComputingMilieux_MISCELLANEOUS ,biology ,Muscles ,Fatty Acids ,medicine.disease ,Sphingolipid ,Cell biology ,Mice, Inbred C57BL ,Insulin receptor ,030104 developmental biology ,chemistry ,Lipotoxicity ,biology.protein ,Signal transduction ,Insulin Resistance ,Signal Transduction - Abstract
International audience; One main mechanism of insulin resistance (IR), a key feature of type 2 diabetes, is the accumulation of saturated fatty acids (FAs) in the muscles of obese patients with type 2 diabetes. Understanding the mechanism that underlies lipid-induced IR is an important challenge. Saturated FAs are metabolized into lipid derivatives called ceramides, and their accumulation plays a central role in the development of muscle IR. Ceramides are produced in the endoplasmic reticulum (ER) and transported to the Golgi apparatus through a transporter called CERT, where they are converted into various sphingolipid species. We show that CERT protein expression is reduced in all IR models studied because of a caspase-dependent cleavage. Inhibiting CERT activity in vitro potentiates the deleterious action of lipotoxicity on insulin signaling, whereas overexpression of CERT in vitro or in vivo decreases muscle ceramide content and improves insulin signaling. In addition, inhibition of caspase activity prevents ceramide-induced insulin signaling defects in C2C12 muscle cells. Altogether, these results demonstrate the importance of physiological ER-to-Golgi ceramide traffic to preserve muscle cell insulin signaling and identify CERT as a major actor in this process.
- Published
- 2018
19. Human herpesvirus 8 infection DNA positivity is associated with low insulin secretion: A case-control study in a sub-Saharan African population with diabetes
- Author
-
Jean Jacques Noubiap, Mesmin Dehayem, Marcel Azabji-Kenfack, Barbara Atogho-Tiedeu, Jérôme LeGoff, Jean Claude Mbanya, V. Balla, Philippe Boudou, Vicky Kamwa, Gaelle Lemdjo, Jean-François Gautier, Eugene Sobngwi, Eric V. Balti, Jean-Louis Nguewa, Eric Lontchi-Yimagou, Martine Etoa, E. Djahmeni, and Fabienne Foufelle
- Subjects
0301 basic medicine ,medicine.medical_specialty ,education.field_of_study ,medicine.diagnostic_test ,business.industry ,Endocrinology, Diabetes and Metabolism ,Population ,virus diseases ,Type 2 Diabetes Mellitus ,Type 2 diabetes ,medicine.disease ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,Endocrinology ,Insulin resistance ,Diabetes mellitus ,Internal medicine ,medicine ,Homeostatic model assessment ,030212 general & internal medicine ,Lipid profile ,business ,education ,Body mass index - Abstract
Background Viruses have been considered potential triggers for the development of diabetes. This study assessed insulin secretion and insulin sensitivity in human herpesvirus 8 (HHV8)-infected and uninfected sub-Saharan African people with diabetes. Methods In all, 173 people with non-autoimmune diabetes were enrolled consecutively: 124 with type 2 diabetes mellitus (T2DM) and 49 with ketosis-prone diabetes (KPD) admitted in hyperglycemic crisis. Those with KPD were further subdivided into those with new-onset ketotic-phase KPD (n = 34) or non-ketotic phase KPD (n = 15). All participants were screened for HHV8-specific antibodies and genomic DNA. Blood samples were collected for analysis of fasting glucose, HbA1c, lipid profile, and C-peptide, with insulin resistance and secretion estimated by homeostasis model assessment. Results Among the 173 diabetic participants, 88 (50.9%) were positive for HHV8 antibodies (Ac-HHV8+), including 15 (8.7%) positive for HHV8 DNA (DNA-HHV8+). The seroprevalence of HHV8 was similar between T2DM (55.6%) and KPD (61.2%) subjects. Of those with and without ketotic-phase KPD, 35.3% and 46.7% were Ac-HHV8+, respectively. Body mass index was significantly in lower DNA-HHV8+ than DNA-HHV8- subjects. Low-density lipoprotein and total cholesterol were significantly higher, but C-peptide and homeostatic model assessment of β-cell function (HOMA-β) were significantly lower in DNA-HHV8+ than DNA-HHV8- participants. After excluding DNA-HHV8+ participants, triglyceride concentrations were significantly higher in Ac-HHV8+ (n = 73) than Ac-HHV8- (n = 85) subjects. In contrast, HOMA-β was significantly higher among Ac-HHV8+ than Ac-HHV8- participants. Conclusions In the present study, HHV8 DNA positivity was associated with low insulin secretion in this sub-Saharan African diabetes population.
- Published
- 2018
20. Lysosomal Cholesterol Hydrolysis Couples Efferocytosis to Anti-Inflammatory Oxysterol Production
- Author
-
Isabelle Dugail, Nemanja Vujic, Paul Dasilva-Jardine, Andrea E. Bochem, Kees Hovingh, Emmanuel L. Gautier, Fabienne Foufelle, Thibault Barouillet, François Orange, Madalina Duta-Mare, Manon Viaud, Laurent Yvan-Charvet, Lazaro Emilio Aira, Laurent Boyer, Christian Stehlik, Sandrine Marchetti, Edward B. Thorp, Stoyan Ivanov, Elsa Garcia, Dagmar Kratky, Rodolphe Guinamard, Isabelle Hainault, Centre méditerranéen de médecine moléculaire (C3M), Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,rac1 GTP-Binding Protein ,Erythrocytes ,Oxysterol ,Physiology ,Inflammasomes ,[SDV]Life Sciences [q-bio] ,Hypercholesterolemia ,Inflammation ,Apoptosis ,Mitochondrion ,Article ,Apoptotic cell clearance ,03 medical and health sciences ,Mice ,NLR Family, Pyrin Domain-Containing 3 Protein ,medicine ,Macrophage ,Animals ,Lymphocytes ,Efferocytosis ,ComputingMilieux_MISCELLANEOUS ,Caspase ,Liver X Receptors ,biology ,Chemistry ,Hydrolysis ,Macrophages ,Neuropeptides ,Biological Transport ,Oxysterols ,Sterol Esterase ,Cell biology ,Mitochondria ,Mice, Inbred C57BL ,030104 developmental biology ,Cholesterol ,Receptors, LDL ,Splenomegaly ,biology.protein ,Cholesterol Esters ,medicine.symptom ,Cardiology and Cardiovascular Medicine ,Lysosomes - Abstract
Rationale: Macrophages face a substantial amount of cholesterol after the ingestion of apoptotic cells, and the LIPA (lysosomal acid lipase) has a major role in hydrolyzing cholesteryl esters in the endocytic compartment. Objective: Here, we directly investigated the role of LIPA-mediated clearance of apoptotic cells both in vitro and in vivo. Methods and Results: We show that LIPA inhibition causes a defective efferocytic response because of impaired generation of 25-hydroxycholesterol and 27-hydroxycholesterol. Reduced synthesis of 25-hydroxycholesterol after LIPA inhibition contributed to defective mitochondria-associated membrane leading to mitochondrial oxidative stress–induced NLRP3 (NOD-like receptor family, pyrin domain containing) inflammasome activation and caspase-1–dependent Rac1 (Ras-related C3 botulinum toxin substrate 1) degradation. A secondary event consisting of failure to appropriately activate liver X receptor–mediated pathways led to mitigation of cholesterol efflux and apoptotic cell clearance. In mice, LIPA inhibition caused defective clearance of apoptotic lymphocytes and stressed erythrocytes by hepatic and splenic macrophages, culminating in splenomegaly and splenic iron accumulation under hypercholesterolemia. Conclusions: Our findings position lysosomal cholesterol hydrolysis as a critical process that prevents metabolic inflammation by enabling efficient macrophage apoptotic cell clearance.
- Published
- 2018
21. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes
- Author
-
Catherine Bernard, Aurélie Carlier, Anne-Françoise Batto, Fabienne Foufelle, Olivier Bourron, Nicolas Venteclef, Anaïs Szpigel, Isabelle Hainault, Pascal Ferré, Eric Hajduch, Alain Ktorza, Jean-François Gautier, Centre de Recherche des Cordeliers (CRC (UMR_S 872)), Université Paris Descartes - Paris 5 (UPD5)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU), Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de Recherche sur les Cultures Anglophones (LARCA UMR 8225), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physiopathologie de la nutrition (LPN), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Pathologies nutritionnelles et métaboliques : obésité et diabète, Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR58-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de Diabétologie [CHU Pitié-Salpétrière], CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Service de diabétologie [CHU Pitié-Salpétrière], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), and Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Pitié-Salpêtrière [APHP]
- Subjects
0301 basic medicine ,Ceramide ,medicine.medical_specialty ,Thioredoxin-Interacting Protein ,Inflammasomes ,THP-1 Cells ,Endocrinology, Diabetes and Metabolism ,Inflammation ,Type 2 diabetes ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Fatty Acids, Monounsaturated ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Internal medicine ,NLR Family, Pyrin Domain-Containing 3 Protein ,Internal Medicine ,medicine ,Animals ,Humans ,Rats, Wistar ,Cells, Cultured ,ComputingMilieux_MISCELLANEOUS ,Type 1 diabetes ,Dihydroceramide desaturase ,Endoplasmic Reticulum Stress ,Lipid Metabolism ,medicine.disease ,Rats ,3. Good health ,Oxidative Stress ,030104 developmental biology ,Endocrinology ,Diabetes Mellitus, Type 2 ,chemistry ,030220 oncology & carcinogenesis ,Leukocytes, Mononuclear ,Unfolded Protein Response ,Unfolded protein response ,medicine.symptom ,Carrier Proteins ,TXNIP - Abstract
Obesity and type 2 diabetes are concomitant with low-grade inflammation affecting insulin sensitivity and insulin secretion. Recently, the thioredoxin interacting protein (TXNIP) has been implicated in the activation process of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we aim to determine whether the expression of TXNIP is altered in the circulating immune cells of individuals with type 2 vs type 1 diabetes and whether this can be related to specific causes and consequences of inflammation. The expression of TXNIP, inflammatory markers, markers of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress and enzymes involved in sphingolipid metabolism was quantified by quantitative reverse transcription real-time PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) of 13 non-diabetic individuals, 23 individuals with type 1 diabetes and 81 with type 2 diabetes. A lipidomic analysis on the plasma of 13 non-diabetic individuals, 35 individuals with type 1 diabetes and 94 with type 2 diabetes was performed. The effects of ER stress or of specific lipids on TXNIP and inflammatory marker expression were analysed in human monocyte-derived macrophages (HMDMs) and THP-1 cells. The expression of TXNIP and inflammatory and UPR markers was increased in the PBMCs of individuals with type 2 diabetes when compared with non-diabetic individuals or individuals with type 1 diabetes. TXNIP expression was significantly correlated with plasma fasting glucose, plasma triacylglycerol concentrations and specific UPR markers. Induction of ER stress in THP-1 cells or cultured HMDMs led to increased expression of UPR markers, TXNIP, NLRP3 and IL-1β. Conversely, a chemical chaperone reduced the expression of UPR markers and TXNIP in PBMCs of individuals with type 2 diabetes. The lipidomic plasma analysis revealed an increased concentration of saturated dihydroceramide and sphingomyelin in individuals with type 2 diabetes when compared with non-diabetic individuals and individuals with type 1 diabetes. In addition, the expression of specific enzymes of sphingolipid metabolism, dihydroceramide desaturase 1 and sphingomyelin synthase 1, was increased in the PBMCs of individuals with type 2 diabetes. Palmitate or C2 ceramide induced ER stress in macrophages as well as increased expression of TXNIP, NLRP3 and IL-1β. In individuals with type 2 diabetes, circulating immune cells display an inflammatory phenotype that can be linked to ER stress and TXNIP expression. Immune cell ER stress can in turn be linked to the specific exogenous and endogenous lipid environment found in type 2 diabetes.
- Published
- 2018
22. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats
- Author
-
Marie-Françoise Arthus, Lise Bankir, Daniel G. Bichet, Sofia Enhörning, Dorinne Desposito, Olle Melander, Ronan Roussel, Catherine Chollet, Valérie Paradis, Christophe Magnan, Christopher Taveau, Isabelle Hainault, Nadine Bouby, Ludovic Waeckel, Erwann Philippe, Gilberto Velho, and Fabienne Foufelle
- Subjects
Blood Glucose ,Male ,medicine.medical_specialty ,Vasopressin ,Indoles ,Pyrrolidines ,Vasopressins ,Endocrinology, Diabetes and Metabolism ,Drinking ,Type 2 diabetes ,Biology ,Copeptin ,Internal medicine ,Glucose Intolerance ,Internal Medicine ,medicine ,Animals ,Obesity ,Glucose tolerance test ,Arginine vasopressin receptor 1A ,medicine.diagnostic_test ,Fatty liver ,Glucose Tolerance Test ,medicine.disease ,Rats, Zucker ,Fatty Liver ,Endocrinology ,Steatosis ,Metabolic syndrome ,Antidiuretic Hormone Receptor Antagonists - Abstract
High plasma copeptin, a marker of vasopressin (VP) secretion, has been shown to be associated with the metabolic syndrome and development of type 2 diabetes in humans. The present study was designed to determine the long-term influence of plasma VP concentration in a rodent model prone to metabolic dysfunction. Obese Zucker rats and their lean counterparts were submitted for 4 weeks to one of three protocols inducing different levels of VP. Circulating VP was either reduced by increasing the daily water intake (low-VP), or increased by a chronic i.p. infusion of VP (high-VP). The control rats had normal VP levels that depended on their own regulation of water intake and VP secretion. Compared with controls with normal VP, lean rats with high-VP had a higher fasting glycaemia after 4 weeks. In obese rats, high-VP promoted hyperinsulinaemia, glucose intolerance, assessed by glucose and insulin tolerance tests, and an impaired response to a pyruvate challenge. Conversely, treatment with a selective arginine vasopressin receptor 1A (V1aR) antagonist reduced glucose intolerance. Low-VP obese rats had unchanged glucose tolerance but exhibited a drastic decrease in liver steatosis compared with control obese rats, associated with low hepatic triacylglycerol and cholesterol content, and reduced expression of hepatic lipogenic genes. These effects were independent of changes in body adiposity, and plasma sodium and osmolality did not differ among groups. These findings show a causal relationship between the VP–hydration axis and the metabolic risk. Therapeutic perspectives include diet recommendations regarding hydration, but also potential pharmacological interventions targeting the VP V1aR.
- Published
- 2015
23. Residue specific effects of human islet polypeptide amyloid on self-assembly and on cell toxicity
- Author
-
Fabienne Foufelle, Ghislaine Guillemain, J. Antoinette Killian, Lucie Khemtémourian, Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Saint-Antoine (CRSA), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Utrecht University [Utrecht], Centre de Recherche Saint-Antoine (CR Saint-Antoine), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Saint-Antoine [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Sub Membrane Biochemistry & Biophysics, Membrane Biochemistry and Biophysics, Université Sciences et Technologies - Bordeaux 1-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)
- Subjects
0301 basic medicine ,Islet amyloid polypeptide ,Amyloid ,endocrine system ,Circular dichroism ,[SDV]Life Sciences [q-bio] ,Kinetics ,Biochemistry ,Islets of Langerhans ,Protein Aggregates ,Aggregation ,03 medical and health sciences ,Residue (chemistry) ,Cell Line, Tumor ,Type 2 diabetes mellitus ,medicine ,Animals ,Humans ,[CHIM]Chemical Sciences ,Amino Acid Sequence ,Pancreatic hormone ,ComputingMilieux_MISCELLANEOUS ,geography ,geography.geographical_feature_category ,Amyloid-inhibitor ,030102 biochemistry & molecular biology ,Chemistry ,Pancreatic islets ,General Medicine ,Hydrogen-Ion Concentration ,Islet ,Rats ,030104 developmental biology ,medicine.anatomical_structure ,Cell toxicity ,Mutation ,Self-assembly - Abstract
Type 2 diabetes mellitus is characterized histopathologically by the presence of fibrillary amyloid deposits in the pancreatic islets of Langerhans. Human islet amyloid polypeptide (hIAPP), the 37-residue pancreatic hormone, is the major constituent of these amyloid deposits. The propensity of IAPP to form amyloid fibrils is strongly dependent on its primary sequence. An intriguing example is His at residue 18. Although H18 is located outside the amyloidogenic region, it has been suggested that this residue and its charge state play an important role in the kinetics of conformational changes and fibril formation as well as in mediating cell toxicity. To gain more insight into the importance of this residue, we have synthesized four analogues (H18R-IAPP, H18K-IAPP, H18A-IAPP and H18E-IAPP) and we performed a full biophysical study on the properties of these peptides. Kinetic experiments as monitored by thioflavin-T fluorescence, transmission electron microscopy, circular dichroism and cell toxicity assays revealed that all variants are less fibrillogenic and less toxic than native hIAPP both at neutral pH and at low pH. This demonstrates that the effect of H18 in native IAPP is not simply determined by its charge state, but rather that residue 18 is important for specific intra- and intermolecular interactions that occur during fibril formation and that may involve charge, size and hydrophobicity. Furthermore, our results indicate that H18R-IAPP has a strong inhibiting effect on native hIAPP fibril formation. Together these results highlight the large impact of modifying a single residue outside the amyloidogenic domain on fibril formation and cell toxicity induced by IAPP, opening up new avenues for design of inhibitors or modulators of IAPP aggregation.
- Published
- 2017
24. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat
- Author
-
Satoshi Hirako, Chitoku Toda, Pascal Ferré, Masanori Nakata, Shiki Okamoto, Yuko Maejima, Michihiro Tateyama, Haruaki Kageyama, Boyang Zhang, Toshihiko Yada, K. Saito, Udval Sedbazar, Tatsuya Sato, Fabienne Foufelle, Masamitsu Nakazato, Tetsuya Shiuchi, Nur Farehan Asgar, Barbara B. Kahn, Sanda Kyaw, Seiji Shioda, Hiroaki Masuzaki, Yasuhiko Minokoshi, Kenta Kobayashi, Takashi Matsuo, and Shigefumi Yokota
- Subjects
AMPK ,0301 basic medicine ,Male ,medicine.medical_specialty ,Corticotropin-Releasing Hormone ,Carbohydrates ,Biology ,AMP-Activated Protein Kinases ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Internal medicine ,medicine ,Animals ,Palatability ,Protein kinase A ,lcsh:QH301-705.5 ,Neurons ,Mechanism (biology) ,digestive, oral, and skin physiology ,Carbohydrate ,Diet ,030104 developmental biology ,Endocrinology ,nervous system ,CPT1c ,lcsh:Biology (General) ,CRH ,Hypothalamus ,Ketone bodies ,food preference ,PVH ,hormones, hormone substitutes, and hormone antagonists ,030217 neurology & neurosurgery ,Hormone - Abstract
Summary Food selection is essential for metabolic homeostasis and is influenced by nutritional state, food palatability, and social factors such as stress. However, the mechanism responsible for selection between a high-carbohydrate diet (HCD) and a high-fat diet (HFD) remains unknown. Here, we show that activation of a subset of corticotropin-releasing hormone (CRH)-positive neurons in the rostral region of the paraventricular hypothalamus (PVH) induces selection of an HCD over an HFD in mice during refeeding after fasting, resulting in a rapid recovery from the change in ketone metabolism. These neurons manifest activation of AMP-activated protein kinase (AMPK) during food deprivation, and this activation is necessary and sufficient for selection of an HCD over an HFD. Furthermore, this effect is mediated by carnitine palmitoyltransferase 1c (CPT1c). Thus, our results identify the specific neurons and intracellular signaling pathway responsible for regulation of the complex behavior of selection between an HCD and an HFD. Video Abstract
- Published
- 2017
25. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice
- Author
-
Marion Mercey, Flora Donati, Aurore Gaudin, Jacqueline Polyte, Camille Baudesson, Mohamed R. Imache, Hervé Lerat, Jean-Michel Pawlotsky, Alexandre Picard, Christophe Magnan, Fabienne Foufelle, Martin R. Higgs, Molecular virology and immunology – Physiopathology and therapeutic of chronic viral hepatitis (Team 18) (Inserm U955), Institut Mondor de Recherche Biomédicale (IMRB), Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Hôpital Henri Mondor, ORANGE, Colette, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Male ,0301 basic medicine ,DOWN-REGULATION ,Glucose uptake ,INSULIN-RECEPTOR SUBSTRATE-1 ,[SDV]Life Sciences [q-bio] ,FOXO1 ,Hepacivirus ,UP-REGULATION ,Biochemistry ,0302 clinical medicine ,HEPATOCELLULAR-CARCINOMA ,SOCS3 ,Phosphorylation ,Cells, Cultured ,Glucose Transporter Type 2 ,TYROSINE PHOSPHORYLATION ,AMINO-ACID SUBSTITUTIONS ,Molecular Bases of Disease ,Hepatitis C ,Absorption, Physiological ,Specific Pathogen-Free Organisms ,3. Good health ,[SDV] Life Sciences [q-bio] ,SUSTAINED VIROLOGICAL RESPONSE ,030211 gastroenterology & hepatology ,Genetically modified mouse ,medicine.medical_specialty ,Mice, Transgenic ,CORE PROTEIN ,Biology ,Prediabetic State ,Open Reading Frames ,Viral Proteins ,03 medical and health sciences ,Insulin resistance ,NONCIRRHOTIC PATIENTS ,Cell Line, Tumor ,Internal medicine ,medicine ,Animals ,Molecular Biology ,Protein kinase B ,Gluconeogenesis ,DIABETES-MELLITUS ,Cell Biology ,medicine.disease ,Muscle, Striated ,IRS2 ,Insulin receptor ,Glucose ,030104 developmental biology ,Endocrinology ,Gene Expression Regulation ,Hepatocytes ,biology.protein ,RNA ,Insulin Resistance ,Protein Processing, Post-Translational - Abstract
International audience; Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNF/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
- Published
- 2017
26. Oxidative and energetic stresses mediate beta-cell dysfunction induced by PGC-1α
- Author
-
Fabienne Foufelle, J.F. Gautier, L Delavallée, J-P Riveline, Adrien Besseiche, B. Blondeau, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de diabétologie et d'endocrinologie [CHU Lariboisière], Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), HAL-UPMC, Gestionnaire, Centre de Recherche des Cordeliers ( CRC ), Université Paris Diderot - Paris 7 ( UPD7 ) -École pratique des hautes études ( EPHE ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), and Hôpital Lariboisière
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,030209 endocrinology & metabolism ,Mice, Transgenic ,Oxidative phosphorylation ,Biology ,medicine.disease_cause ,03 medical and health sciences ,Mice ,PGC-1 ,0302 clinical medicine ,Endocrinology ,Oxygen Consumption ,[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathology ,Internal medicine ,Insulin-Secreting Cells ,Coactivator ,Internal Medicine ,medicine ,Animals ,Insulin ,Beta (finance) ,Receptor ,[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,Insulin secretion ,Energetic stress ,AMPK ,General Medicine ,[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ,Beta cell ,030104 developmental biology ,Mitochondrial biogenesis ,Oxidative stress ,Glucocorticoid ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,medicine.drug - Abstract
Aim Alteration of functional beta-cell mass in adults can be programmed by adverse events during fetal life. Previously, it was demonstrated that high glucocorticoid (GC) levels during fetal life participate in this programming by inhibition of beta-cell development. More specifically, GC levels stimulate expression of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a transcriptional co-regulator of the GC receptor (GR), which per se impairs beta-cell mass and function when overexpressed. As PGC-1α is also a potent inducer of mitochondrial biogenesis, our study aimed to determine how PGC-1α modifies mitochondrial function in beta cells and how it might regulate insulin secretion. Methods Beta-cell function was studied in mice overexpressing PGC-1α specifically in beta cells and in MIN6 cells overexpressing PGC-1α in vitro . Results PGC-1α overexpression in beta cells in vivo leads to a reduced beta-cell mass early in fetal life, whereas PGC-1α overexpression in vitro stimulates mitochondrial biogenesis and respiratory activity without improving ATP production, while increasing oxidative stress and impairing insulin secretion in response to glucose. While oxidative stress with PGC-1α overexpression in beta cells activates AMPK, it has also been revealed that blocking such oxidative stress or AMPK activation restores insulin secretion. Conclusion PGC-1α induces oxidative stress, which disrupts insulin secretion by AMPK activation. Thus, control of oxidative or energetic stress in beta cells may help to restore insulin secretion.
- Published
- 2017
27. Lysosomal Cholesterol Hydrolysis Couples Efferocytosis To Anti-Inflammatory Oxysterol Production
- Author
-
Laurent Boyer, Laurent Yvan-Charvet, Andrea E. Bochem, Sandrine Marchetti, Madalina Duta-Mare, Manon Viaud, Kees Hovingh, Christian Stehlik, Isabelle Hainault, Emmanuel L. Gautier, Fabienne Foufelle, Rodolphe Guinamard, Dagmar Kratky, Stoyan Ivanov, Nemanja Vujic, Isabelle Dugail, and Edward B. Thorp
- Subjects
chemistry.chemical_compound ,Hydrolysis ,chemistry ,Oxysterol ,Cholesterol ,medicine.drug_class ,medicine ,Pharmacology ,Cardiology and Cardiovascular Medicine ,Efferocytosis ,Anti-inflammatory - Published
- 2019
28. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes
- Author
-
Rongrong Fan, Toby Lawrence, Judith Aron-Wisnewsky, Fabienne Foufelle, Zhiqiang Huang, Patricia Ancel, Anastasios E. Damdimopoulos, Antoine Soprani, Isabelle Hainault, Ning Liang, Saioa Goñi, Raphaelle Ballaire, Jean-François Gautier, Amine Toubal, Karima Drareni, Fawaz Alzaid, Eckardt Treuter, Nicolas Venteclef, Centre d'Immunologie de Marseille - Luminy (CIML), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Swedish Research Council (Vetenskapsradet), Swedish Cancer Society (Cancerfonden), Swedish Diabetes Foundation (Diabetesfonden), Novo Nordisk Foundation (Novo Nordisk Fonden), Center for Biosciences (CIMED) at Karolinska Institutet, French National Agency of Research (CONRAD), French National Agency of Research [ANR CE12 2014], French National Agency of Research (FATMAC), Region Ile de France (CORDDIM), Paris city (EMERGENCE), French Foundation for Medical Research [Equipe FRM DEQ20140329504], French government [ANR-10-IAH, ICAN MetaMACS], Assistance Publique des Hopitaux de Paris (APHP), Programs of Clinical Investigation (CRC Fibrota) [AOO759-32], PHRC Glucostress [P081122], 'Ministere de la Recherche et de l'Enseignement superieur', China Scholarship Council (CRC), Karolinska Institutet (KID), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
0301 basic medicine ,Male ,adipose-tissue macrophages ,Adipose tissue ,Gene Expression ,Mice, Obese ,Type 2 diabetes ,Mice ,RNA, Small Interfering ,ppar-gamma ,Epigenomics ,Bone Marrow Transplantation ,Mice, Knockout ,Reverse Transcriptase Polymerase Chain Reaction ,Intracellular Signaling Peptides and Proteins ,General Medicine ,Middle Aged ,Flow Cytometry ,Immunohistochemistry ,GPS2 ,Adipose Tissue ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Female ,medicine.symptom ,Adult ,medicine.medical_specialty ,Blotting, Western ,kappa-b ,Inflammation ,Biology ,Diet, High-Fat ,Real-Time Polymerase Chain Reaction ,General Biochemistry, Genetics and Molecular Biology ,insulin-resistance ,03 medical and health sciences ,Insulin resistance ,Stress, Physiological ,Diabetes mellitus ,Internal medicine ,medicine ,Animals ,Humans ,Obesity ,gene ,nuclear receptor corepressor ,alternative activation ,polarization ,Macrophages ,medicine.disease ,signaling pathways ,Transplantation ,030104 developmental biology ,Endocrinology ,RAW 264.7 Cells ,Diabetes Mellitus, Type 2 ,inflammation ,Insulin Resistance - Abstract
International audience; Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.
- Published
- 2016
29. SETDB2 Links Glucocorticoid to Lipid Metabolism through Insig2a Regulation
- Author
-
Sepideh Khorasanizadeh, Jun Ding, Ryan M. Esquejo, Katalin Sandor, Manuel Roqueta-Rivera, Peter E. Phelan, Bence Daniel, Xiaoman Li, Timothy F. Osborne, and Fabienne Foufelle
- Subjects
0301 basic medicine ,Male ,Transcription, Genetic ,Physiology ,Regulator ,Mice, Obese ,Biológiai tudományok ,Dexamethasone ,Histones ,0302 clinical medicine ,Glucocorticoid receptor ,Természettudományok ,Promoter Regions, Genetic ,Regulation of gene expression ,Chromatin ,Enhancer Elements, Genetic ,Liver ,Gene Knockdown Techniques ,Lipogenesis ,Sterol Regulatory Element Binding Protein 1 ,Glucocorticoid ,medicine.drug ,Protein Binding ,medicine.medical_specialty ,Biology ,Methylation ,Article ,03 medical and health sciences ,Receptors, Glucocorticoid ,Internal medicine ,medicine ,Animals ,RNA, Messenger ,Molecular Biology ,Glucocorticoids ,Lysine ,Membrane Proteins ,Lipid metabolism ,Cell Biology ,Feeding Behavior ,Histone-Lysine N-Methyltransferase ,Lipid Metabolism ,Sterol regulatory element-binding protein ,Mice, Inbred C57BL ,030104 developmental biology ,Endocrinology ,Gene Expression Regulation ,Genetic Loci ,030217 neurology & neurosurgery - Abstract
Transcriptional and chromatin regulations mediate the liver response to nutrient availability. The role of chromatin factors involved in hormonal regulation in response to fasting is not fully understood. We have identified SETDB2, a glucocorticoid-induced putative epigenetic modifier, as a positive regulator of GR-mediated gene activation in liver. Insig2a increases during fasting to limit lipid synthesis, but the mechanism of induction is unknown. We show Insig2a induction is GR-SETDB2 dependent. SETDB2 facilitates GR chromatin enrichment and is key to glucocorticoid-dependent enhancer-promoter interactions. INSIG2 is a negative regulator of SREBP, and acute glucocorticoid treatment decreased active SREBP during refeeding or in livers of Ob/Ob mice, both systems of elevated SREBP-1c-driven lipogenesis. Knockdown of SETDB2 or INSIG2 reversed the inhibition of SREBP processing. Overall, these studies identify a GR-SETDB2 regulatory axis of hepatic transcriptional reprogramming and identify SETDB2 as a potential target for metabolic disorders with aberrant glucocorticoid actions.
- Published
- 2016
30. Role of endoplasmic reticulum stress in drug-induced toxicity
- Author
-
Bernard Fromenty, Fabienne Foufelle, Centre de Recherche des Cordeliers ( CRC (UMR_S 872) ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Foie, métabolismes et cancer, Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre de Recherche des Cordeliers (CRC (UMR_S 872)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Jonchère, Laurent, Université Paris Descartes - Paris 5 (UPD5)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
0301 basic medicine ,Drug ,Thapsigargin ,media_common.quotation_subject ,Reviews ,Review ,Pharmacology ,medicine.disease_cause ,03 medical and health sciences ,chemistry.chemical_compound ,medicine ,General Pharmacology, Toxicology and Pharmaceutics ,Arsenic trioxide ,Adverse effect ,media_common ,business.industry ,Adverse effects ,Endoplasmic reticulum ,toxicity ,[ SDV.SP.PHARMA ] Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,3. Good health ,030104 developmental biology ,Neurology ,chemistry ,Liver ,[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,Toxicity ,Unfolded protein response ,[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,business ,ER stress ,Oxidative stress - Abstract
International audience; Drug-induced toxicity is a key issue for public health because some side effects can be severe and life-threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug-induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug-induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug-induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models
- Published
- 2016
31. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning
- Author
-
Julien Castel, Fabienne Foufelle, Julien Dairou, Serge Luquet, Alexandre Prola, Mélissa Flamment, Aurélie Joly-Amado, Renée Ventura-Clapier, Amélie Lacombe, Christophe Magnan, Nadim Kassis, Raphael G. P. Denis, Claude Rouch, Patrice D. Cani, and Céline Cansell
- Subjects
medicine.medical_specialty ,General Immunology and Microbiology ,General Neuroscience ,digestive, oral, and skin physiology ,Lipid metabolism ,Metabolism ,Carbohydrate metabolism ,Biology ,medicine.disease ,General Biochemistry, Genetics and Molecular Biology ,Nutrient ,Endocrinology ,nervous system ,Hypothalamus ,Diabetes mellitus ,Internal medicine ,medicine ,medicine.symptom ,Molecular Biology ,Weight gain ,Dyslipidemia - Abstract
Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders.
- Published
- 2012
32. Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression
- Author
-
Ji Miao, Bhavapriya Vaitheesvaran, Yanning Wang, Sudha B. Biddinger, Matthew D. Hirschey, Robert V. Farese, Joel T. Haas, Fabienne Foufelle, Rosanne M. Crooke, Dipanjan Chanda, Irwin J. Kurland, Enpeng Zhao, Mary E. Haas, and Mark J. Graham
- Subjects
Male ,Physiology ,medicine.medical_treatment ,Gene Expression ,Mice, Obese ,mTORC1 ,Type 2 diabetes ,Mice ,0302 clinical medicine ,Insulin ,Cells, Cultured ,0303 health sciences ,Gene knockdown ,biology ,Ketones ,Liver ,Gene Knockdown Techniques ,030220 oncology & carcinogenesis ,Lipogenesis ,Female ,RNA Interference ,Signal transduction ,Sterol Regulatory Element Binding Protein 1 ,Signal Transduction ,medicine.medical_specialty ,Mice, Transgenic ,Fructose ,Article ,03 medical and health sciences ,Internal medicine ,Dietary Carbohydrates ,medicine ,Animals ,Obesity ,Molecular Biology ,Triglycerides ,030304 developmental biology ,Cell Nucleus ,Membrane Proteins ,Cell Biology ,medicine.disease ,Receptor, Insulin ,Fatty Liver ,Mice, Inbred C57BL ,Insulin receptor ,Glucose ,Endocrinology ,Diabetes Mellitus, Type 2 ,Gene Expression Regulation ,Hepatocytes ,biology.protein ,Steatosis - Abstract
SummaryDissecting the role of insulin in the complex regulation of triglyceride metabolism is necessary for understanding dyslipidemia and steatosis. Liver insulin receptor knockout (LIRKO) mice show that in the physiological context of feeding, hepatic insulin signaling is not required for the induction of mTORC1, an upstream activator of the lipogenic regulator, SREBP-1c. Feeding induces SREBP-1c mRNA in LIRKO livers, though not to the extent observed in controls. A high fructose diet also partially induces SREBP-1c and lipogenic gene expression in LIRKO livers. Insulin signaling becomes more important in the pathological context of obesity, as knockdown of the insulin receptor in ob/ob mice, a model of Type 2 diabetes, using antisense oligonucleotides, abolishes the induction of SREBP-1c and its targets by obesity and ameliorates steatosis. Thus, insulin-independent signaling pathways can partially compensate for insulin in the induction of SREBP-1c by feeding but the further induction by obesity/Type 2 diabetes is entirely dependent upon insulin.
- Published
- 2012
33. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c
- Author
-
Pascal Ferré and Fabienne Foufelle
- Subjects
medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,medicine.medical_treatment ,Carbohydrate metabolism ,Biology ,Endoplasmic Reticulum ,Gene Expression Regulation, Enzymologic ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Insulin resistance ,Internal medicine ,Internal Medicine ,medicine ,Animals ,Homeostasis ,Humans ,Carbohydrate-responsive element-binding protein ,030304 developmental biology ,0303 health sciences ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Lipogenesis ,Insulin ,Fatty liver ,medicine.disease ,Fatty Liver ,030220 oncology & carcinogenesis ,Unfolded protein response ,Insulin Resistance ,Steatosis ,Sterol Regulatory Element Binding Protein 1 ,Transcription Factors - Abstract
Steatosis is an accumulation of triglycerides in the liver. Although an excessive availability of plasma fatty acids is an important determinant of steatosis, lipid synthesis from glucose (lipogenesis) is now also considered as an important contributing factor. Lipogenesis is an insulin- and glucose-dependent process that is under the control of specific transcription factors, sterol regulatory element binding protein 1c (SREBP-1c), activated by insulin and carbohydrate response element binding protein (ChREBP) activated by glucose. Insulin induces the maturation of SREBP-1c by a proteolytic mechanism initiated in the endoplasmic reticulum (ER). SREBP-1c in turn activates glycolytic gene expression, allowing glucose metabolism, and lipogenic genes in conjunction with ChREBP. Lipogenesis activation in the liver of obese markedly insulin-resistant steatotic rodents is then paradoxical. Recent data suggest that the activation of SREBP-1c and thus of lipogenesis is secondary in the steatotic liver to an ER stress. The ER stress activates the cleavage of SREBP-1c independent of insulin, thus explaining the paradoxical stimulation of lipogenesis in an insulin-resistant liver. Inhibition of the ER stress in obese rodents decreases SREBP-1c activation and lipogenesis and improves markedly hepatic steatosis and insulin sensitivity. ER is thus a new partner in steatosis and metabolic syndrome which is worth considering as a potential therapeutic target.
- Published
- 2010
34. Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis
- Author
-
Isabelle Hainault, Pascal Ferré, Helene L. Kammoun, Mélissa Flamment, and Fabienne Foufelle
- Subjects
Protein Denaturation ,Apolipoprotein B ,Endocrinology, Diabetes and Metabolism ,Endoplasmic Reticulum ,Genetics ,medicine ,Animals ,Humans ,Secretion ,Molecular Biology ,Transcription factor ,Nutrition and Dietetics ,biology ,Chemistry ,Endoplasmic reticulum ,Cell Biology ,medicine.disease ,Cell biology ,Fatty Liver ,Oxidative Stress ,Lipogenesis ,biology.protein ,Unfolded protein response ,Chemical chaperone ,Steatosis ,Cardiology and Cardiovascular Medicine - Abstract
Purpose of review To examine the role of endoplasmic reticulum stress in the regulation of hepatic lipid metabolism and its contribution to the development of hepatic steatosis. Recent findings Endoplasmic reticulum stress activation has been reported in most models of hepatic steatosis in rodents and humans and its contribution to hepatic fat deposition has been recently documented. The main metabolic pathway affected by endoplasmic reticulum stress is lipogenesis. Endoplasmic reticulum stress activates the proteolytic cleavage of the lipogenic transcription factor sterol regulatory element binding protein-1c leading to the induction of lipogenic enzyme expression. A role for X box-binding protein 1, an endoplasmic reticulum stress-activated transcription factor, has also recently emerged. Endoplasmic reticulum stress, by inhibiting apoB100 secretion, has associated with impaired VLDL secretion. In rodents, treatments with molecular or chemical chaperones that reduce endoplasmic reticulum stress markers have fully demonstrated their efficiency in the treatment of hepatic steatosis. Summary Manipulating endoplasmic reticulum stress pathway yields encouraging results for the treatment of hepatic steatosis in rodents. However, activation of unfolded protein response is a physiological mechanism, which is particularly important for secretory cells such as hepatocytes and the long-term consequences of such treatments should be cautiously evaluated.
- Published
- 2010
35. AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC
- Author
-
Mini P. Sajan, S. L. Longnus, Sonali Nimal, Isabelle Hainault, E Van Obberghen, R. Kahn, Robert V. Farese, U. Braun, Fabienne Foufelle, Atsushi Miura, Gautam Bandyopadhyay, Mary L. Standaert, and M. Leitges
- Subjects
Blood Glucose ,Male ,MAPK/ERK pathway ,medicine.medical_specialty ,Physiology ,Endocrinology, Diabetes and Metabolism ,Glucose uptake ,Muscle Fibers, Skeletal ,Glucose Transport Proteins, Facilitative ,Enzyme Activators ,AMP-Activated Protein Kinases ,In Vitro Techniques ,Second Messenger Systems ,Mice ,AMP-activated protein kinase ,Physical Conditioning, Animal ,Physiology (medical) ,Internal medicine ,medicine ,Animals ,Hypoglycemic Agents ,Extracellular Signal-Regulated MAP Kinases ,Protein kinase A ,Protein Kinase C ,Protein kinase C ,Mice, Knockout ,biology ,Glucose transporter ,AMPK ,Articles ,Aminoimidazole Carboxamide ,Metformin ,Rats ,Enzyme Activation ,Isoenzymes ,Endocrinology ,biology.protein ,Ribonucleosides ,Signal Transduction ,medicine.drug - Abstract
Activators of 5′-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-ζ; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-ζ, and RNA interference (RNAi)-mediated knockdown of PKC-ζ. In mice, muscle-specific aPKC (PKC-λ) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[3H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
- Published
- 2010
36. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice
- Author
-
Isabelle Hainault, Pascal Ferré, Tatsuro Koike, Helene L. Kammoun, Hervé Chabanon, Christophe Magnan, Serge Luquet, and Fabienne Foufelle
- Subjects
Male ,medicine.medical_specialty ,medicine.medical_treatment ,Gene Expression ,Mice, Obese ,Biology ,Endoplasmic Reticulum ,Models, Biological ,Mice ,chemistry.chemical_compound ,Insulin resistance ,Internal medicine ,medicine ,Animals ,Insulin ,Obesity ,Rats, Wistar ,Endoplasmic Reticulum Chaperone BiP ,Heat-Shock Proteins ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Fatty liver ,Nuclear Proteins ,Tyrosine phosphorylation ,General Medicine ,Lipid Metabolism ,medicine.disease ,Rats ,Rats, Zucker ,Fatty Liver ,Glucose ,Endocrinology ,Liver ,chemistry ,Lipogenesis ,Hepatocytes ,Insulin Receptor Substrate Proteins ,Unfolded protein response ,Thapsigargin ,lipids (amino acids, peptides, and proteins) ,Sterol regulatory element-binding protein 2 ,Insulin Resistance ,Steatosis ,Sterol Regulatory Element Binding Protein 1 ,Molecular Chaperones ,Signal Transduction ,Sterol Regulatory Element Binding Protein 2 ,Transcription Factors ,Research Article - Abstract
Hepatic steatosis is present in insulin-resistant obese rodents and is concomitant with active lipogenesis. Hepatic lipogenesis depends on the insulin-induced activation of the transcription factor SREBP-1c. Despite prevailing insulin resistance, SREBP-1c is activated in the livers of genetically and diet-induced obese rodents. Recent studies have reported the presence of an ER stress response in the livers of obese ob/ob mice. To assess whether ER stress promotes SREBP-1c activation and thus contributes to lipogenesis, we overexpressed the chaperone glucose-regulated protein 78 (GRP78) in the livers of ob/ob mice using an adenoviral vector. GRP78 overexpression reduced ER stress markers and inhibited SREBP-1c cleavage and the expression of SREBP-1c and SREBP-2 target genes. Furthermore, hepatic triglyceride and cholesterol contents were reduced, and insulin sensitivity improved, in GRP78-injected mice. These metabolic improvements were likely mediated by restoration of IRS-2 expression and tyrosine phosphorylation. Interestingly, GRP78 overexpression also inhibited insulin-induced SREBP-1c cleavage in cultured primary hepatocytes. These findings demonstrate that GRP78 inhibits both insulin-dependent and ER stress–dependent SREBP-1c proteolytic cleavage and explain the role of ER stress in hepatic steatosis in obese rodents.
- Published
- 2009
37. SREBP-1c Transcription Factor and Lipid Homeostasis: Clinical Perspective
- Author
-
Fabienne Foufelle and Pascal Ferré
- Subjects
medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,medicine.medical_treatment ,Biology ,Models, Biological ,Gene Expression Regulation, Enzymologic ,chemistry.chemical_compound ,Endocrinology ,Metabolic Diseases ,Internal medicine ,Insulin Secretion ,medicine ,Animals ,Homeostasis ,Humans ,Insulin ,Secretion ,Transcription factor ,Fatty acid synthesis ,Regulation of gene expression ,Lipogenesis ,Liver Diseases ,Endoplasmic reticulum ,food and beverages ,Lipid metabolism ,Lipid Metabolism ,Liver ,chemistry ,Pediatrics, Perinatology and Child Health ,lipids (amino acids, peptides, and proteins) ,Insulin Resistance ,Sterol Regulatory Element Binding Protein 1 ,Glycolysis ,Protein Processing, Post-Translational ,Transcription Factors - Abstract
Insulin has long-term effects on glucose and lipid metabolism through its control on the expression of specific genes. In insulin sensitive tissues and particularly in the liver, the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) transduces the insulin signal. SREBP-1c is a transcription factor which is synthetized as a precursor in the membranes of the endoplasmic reticulum and which requires post-translational modification to yield its transcriptionally active nuclear form. Insulin activates the transcription and the proteolytic maturation of SREBP-1c. SREBP-1c induces the expression of a family of genes involved in glucose utilization and fatty acid synthesis and can be considered as a thrifty gene. Since a high lipid availability is deleterious for insulin sensitivity and secretion, a role for SREBP-1c in dyslipidaemia and type 2 diabetes has been considered in genetic studies and some association demonstrated. Finally, SREBP-1c could also participate to the hepatic steatosis observed in humans and related to alcohol consumption and hyperhomocysteinaemia, two pathologies which are concomitant with a stress of the endoplasmic reticulum and an insulin-independent SREBP-1c activation.
- Published
- 2007
38. Endoplasmic reticulum stress in nonalcoholic fatty liver disease
- Author
-
Pascal Ferré and Fabienne Foufelle
- Subjects
medicine.medical_specialty ,Chemistry ,Endoplasmic reticulum ,Inflammation ,medicine.disease_cause ,medicine.disease ,Endocrinology ,Apoptosis ,Internal medicine ,Lipogenesis ,Nonalcoholic fatty liver disease ,medicine ,Unfolded protein response ,Steatohepatitis ,medicine.symptom ,Oxidative stress - Published
- 2015
39. GRP78 rescues the ABCG5 ABCG8 sterol transporter in db/db mice
- Author
-
Gregory A. Graf, Kai Su, Xia Gao, Nadezhda S. Sabeva, Deneys R. van der Westhuyzen, Ailing Ji, Fabienne Foufelle, and Yuhuan Wang
- Subjects
Leptin ,Male ,medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,Lipoproteins ,FOXO1 ,Biology ,Article ,chemistry.chemical_compound ,Mice ,Endocrinology ,Internal medicine ,medicine ,Animals ,ATP Binding Cassette Transporter, Subfamily G, Member 5 ,Liver X receptor ,Receptor ,Endoplasmic Reticulum Chaperone BiP ,Heat-Shock Proteins ,Leptin receptor ,ATP Binding Cassette Transporter, Subfamily G, Member 8 ,Tauroursodeoxycholic acid ,Sterol regulatory element-binding protein ,chemistry ,Unfolded protein response ,ATP-Binding Cassette Transporters - Abstract
Objective Mice lacking leptin (ob/ob) or its receptor (db/db) are obese, insulin resistant, and have reduced levels of biliary cholesterol due, in part, to reduced levels of hepatic G5G8. Chronic leptin replacement restores G5G8 abundance and increases biliary cholesterol concentrations, but the molecular mechanisms responsible for G5G8 regulation remain unclear. In the current study, we used a series of mouse models to address potential mechanisms for leptin-mediated regulation of G5G8. Methods and Results We acutely replaced leptin in ob/ob mice and deleted hepatic leptin receptors in lean mice. Neither manipulation altered G5G8 abundance or biliary cholesterol. Similarly, hepatic vagotomy had no effect on G5G8. Alternatively, G5G8 may be decreased in ob/ob and db/db mice due to ER dysfunction, the site of G5G8 complex assembly. Overexpression of the ER chaperone GRP78 using an adenoviral vector restores ER function and reduces steatosis in ob/ob mice. Therefore, we determined if AdGRP78 could rescue G5G8 in db/db mice. As in ob/ob mice, AdGRP78 reduced expression of lipogenic genes and plasma triglycerides in the db/db strain. Both G5 and G8 protein levels increased as did total biliary cholesterol, but in the absence of changes in G5 or G8 mRNAs. The increase in G5G8 was associated with increases in a number of proteins, including the ER lectin chaperone, calnexin, a key regulator of G5G8 complex assembly. Conclusions Leptin signaling does not directly regulate G5G8 abundance. The loss of G5G8 in mice harboring defects in the leptin axis is likely associated with compromised ER function.
- Published
- 2015
40. Metformin-Induced Stimulation of Adenosine 5′ Monophosphate-Activated Protein Kinase (PRKA) Impairs Progesterone Secretion in Rat Granulosa Cells1
- Author
-
Joëlle Dupont, Patricia Solnais, Pascal Ferré, Lucie Tosca, and Fabienne Foufelle
- Subjects
Adenosine monophosphate ,endocrine system ,medicine.medical_specialty ,Kinase ,Cell Biology ,General Medicine ,Progesterone secretion ,Biology ,Adenosine ,Polycystic ovary ,Metformin ,chemistry.chemical_compound ,Endocrinology ,medicine.anatomical_structure ,Reproductive Medicine ,chemistry ,Internal medicine ,medicine ,Ovarian follicle ,Protein kinase A ,medicine.drug - Abstract
Metformin is an anti-diabetic drug commonly used to treat cycle disorders and anovulation in women with polycystic ovary syndrome. However, the effects and molecular mechanism of metformin in the ovary are not entirely understood. We investigated the effects of this drug on steroidogenesis and proliferation in rat granulosa cells. Metformin (10 mM) treatment for 48 h reduced progesterone and estradiol (E 2 ) production in both basal conditions and under FSH stimulation. It also decreased the levels of the HSD3B, CYP11A1, STAR, and CYP19A1 proteins in response to FSH (10 � 8 M) and of HSD3B in the basal state only. Metformin treatment (10 mM, 24 h) also reduced cell proliferation and the levels of CCND2 and CCNE proteins without affecting cell viability, both in the basal state and in response to FSH. Furthermore, metformin treatment for 1 h simultaneously increased the Thr172 phosphorylation of PRKAA (adenosine 5 0 monophosphate-activated protein kinase alpha) and the Ser79 phosphorylation of ACACA (acetylCoenzyme A carboxylase alpha). The adenovirus-mediated production of dominant-negative PRKAA totally abolished the effects of metformin on progesterone secretion, HSD3B and STAR protein production, and MAPK3/1 phosphorylation. Conversely, total inhibition of PRKAA Thr172 phosphorylation with the dominant-negative PRKAA adenovirus did not restore the decrease in E 2 production and cell proliferation induced by metformin. Our results therefore strongly suggest that metformin reduces progesterone production via a PRKAA-dependent mechanism, whereas PRKAA activation is not essential for the decrease in E 2 production and cell growth induced by metformin in rat granulosa cells. adenosine 5 0 , monophosphate-activated protein kinase, folliclestimulating hormone, granulosa cells, kinases, mechanisms of hormone action, ovary, progesterone, steroid hormones
- Published
- 2006
41. Functions of AMP-activated protein kinase in adipose tissue
- Author
-
Pascal Ferré, Marie Daval, and Fabienne Foufelle
- Subjects
medicine.medical_specialty ,FGF21 ,biology ,Adiponectin ,Physiology ,Chemistry ,Adipose tissue ,AMPK ,White adipose tissue ,medicine.disease ,Endocrinology ,Insulin resistance ,AMP-activated protein kinase ,Internal medicine ,Lipogenesis ,medicine ,biology.protein - Abstract
AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes.
- Published
- 2006
42. Role of adenosine monophosphate-activated protein kinase in the control of energy homeostasis
- Author
-
Pascal Ferré and Fabienne Foufelle
- Subjects
medicine.medical_specialty ,Medicine (miscellaneous) ,Mitogen-activated protein kinase kinase ,Biology ,Gene Expression Regulation, Enzymologic ,MAP2K7 ,Internal medicine ,medicine ,Animals ,Homeostasis ,Humans ,Insulin ,ASK1 ,Obesity ,Phosphorylation ,Nutrition and Dietetics ,Purinergic signalling ,Adenosine A3 receptor ,Adenosine ,Adenosine Monophosphate ,Cell biology ,Enzyme Activation ,Endocrinology ,Cyclin-dependent kinase 9 ,Energy Metabolism ,Protein Kinases ,Adenosine A2B receptor ,medicine.drug - Abstract
Purpose of review Adenosine monophosphate-activated protein kinase is involved in cellular energy homeostasis. This review will evaluate recent findings in terms of the importance of adenosine monophosphate-activated protein kinase as a potential target for the treatment of diseases such as obesity and type 2 diabetes. Recent findings Adenosine monophosphate-activated protein kinase is involved in the insulin-sensitizing action of adipocyte hormones, adiponectin and leptin and antidiabetic drugs. One important novelty is that adenosine monophosphate-activated protein kinase is part of the regulation cascade of food intake by hormones and substrates at the hypothalamic level. A global energy shortage stimulates adenosine monophosphate-activated protein kinase in hypothalamic nuclei, which then transmits a message of hunger to the organism. Finally, an adenosine monophosphate-activated protein kinase has been discovered. This kinase (LKB1) phosphorylates and activates adenosine monophosphate-activated protein kinase and 11 adenosine monophosphate-activated protein kinase-related kinases. LKB1 is continuously active and the activation of adenosine monophosphate-activated protein kinase by LKB1 is then secondary to an action of adenosine monophosphate on adenosine monophosphate-activated protein kinase rather than on LKB1. Summary The relationship between adenosine monophosphate-activated protein kinase activation and increased insulin sensitivity points to this enzyme as a potential target in type 2 diabetes. However, activation of adenosine monophosphate-activated protein kinase, although beneficial in terms of insulin sensitivity, might be detrimental because it can stimulate food intake. Conversely, adenosine monophosphate-activated protein kinase inhibition could decrease food intake and thus reduce obesity. Finally, adenosine monophosphate-activated protein kinase is a better target than LKB1 for the development of specific activating (or inhibiting) drugs.
- Published
- 2005
43. Hepatic Glucokinase Is Required for the Synergistic Action of ChREBP and SREBP-1c on Glycolytic and Lipogenic Gene Expression
- Author
-
Jean Girard, Renaud Dentin, Mark A. Magnuson, Fadila Benhamed, Pascal Ferré, Catherine Postic, Fabienne Foufelle, Véronique Fauveau, and Jean-Paul Pégorier
- Subjects
Time Factors ,Transcription, Genetic ,Biochemistry ,Mice ,chemistry.chemical_compound ,Glucokinase ,Glycolysis ,RNA, Small Interfering ,Cells, Cultured ,Mice, Knockout ,Regulation of gene expression ,biology ,Glycogen ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Reverse Transcriptase Polymerase Chain Reaction ,Nuclear Proteins ,DNA-Binding Proteins ,Fatty acid synthase ,Liver ,Carbohydrate Metabolism ,Sterol Regulatory Element Binding Protein 1 ,Signal Transduction ,medicine.medical_specialty ,Immunoblotting ,Pyruvate Kinase ,Glucose-6-Phosphate ,Mice, Transgenic ,Carbohydrate metabolism ,Adenoviridae ,Internal medicine ,medicine ,Animals ,RNA, Messenger ,Molecular Biology ,Cell Nucleus ,Pentosephosphates ,Acetyl-CoA carboxylase ,Proteins ,Cell Biology ,Blotting, Northern ,Lipid Metabolism ,Mice, Inbred C57BL ,Kinetics ,Glucose ,Endocrinology ,Gene Expression Regulation ,Microscopy, Fluorescence ,Glucose 6-phosphate ,chemistry ,CCAAT-Enhancer-Binding Proteins ,Hepatocytes ,biology.protein ,RNA ,Fatty Acid Synthases ,Acetyl-CoA Carboxylase ,Transcription Factors - Abstract
Hepatic glucokinase (GK) catalyzes the phosphorylation of glucose to glucose 6-phosphate (G6P), a step which is essential for glucose metabolism in liver as well as for the induction of glycolytic and lipogenic genes. The sterol regulatory element-binding protein-1c (SREBP-1c) has emerged as a major mediator of insulin action on hepatic gene expression, but the extent to which its transcriptional effect is caused by an increased glucose metabolism remains unclear. Through the use of hepatic GK knockout mice (hGK-KO) we have shown that the acute stimulation by glucose of l-pyruvate kinase (l-PK), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and Spot 14 genes requires GK expression. To determine whether the effect of SREBP-1c requires GK expression and subsequent glucose metabolism, a transcriptionally active form of SREBP-1c was overexpressed both in vivo and in primary cultures of control and hGK-KO hepatocytes. Our results demonstrate that the synergistic action of SREBP-1c and glucose metabolism via GK is necessary for the maximal induction of l-PK, ACC, FAS, and Spot 14 gene expression. Indeed, in hGK-KO hepatocytes overexpressing SREBP-1c, the effect of glucose on glycolytic and lipogenic genes is lost because of the impaired ability of these hepatocytes to efficiently metabolize glucose, despite a marked increase in low K(m) hexokinase activity. Our studies also reveal that the loss of glucose effect observed in hGK-KO hepatocytes is associated with a decreased in the carbohydrate responsive element-binding protein (ChREBP) gene expression, a transcription factor suggested to mediate glucose signaling in liver. Decreased ChREBP gene expression, achieved using small interfering RNA, results in a loss of glucose effect on endogenous glycolytic (l-PK) and lipogenic (FAS, ACC) gene expression, thereby demonstrating the direct implication of ChREBP in glucose action. Together these results support a model whereby both SREBP-1c and glucose metabolism, acting via ChREBP, are necessary for the dietary induction of glycolytic and lipogenic gene expression in liver.
- Published
- 2004
44. Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)
- Author
-
Laura E. Parton, Frédérique Diraison, Pascal Ferré, Fabienne Foufelle, Isabelle Leclerc, Guy A. Rutter, and Celia P. Briscoe
- Subjects
Male ,medicine.medical_specialty ,medicine.medical_treatment ,Genetic Vectors ,Gene Expression ,Apoptosis ,Biochemistry ,Adenoviridae ,Islets of Langerhans ,Acetyltransferases ,Transduction, Genetic ,Internal medicine ,medicine ,Animals ,Insulin ,Rats, Wistar ,Molecular Biology ,Cells, Cultured ,Triglycerides ,geography ,geography.geographical_feature_category ,biology ,Glucokinase ,Pancreatic islets ,Glucose transporter ,AMPK ,Cell Biology ,Ribonucleotides ,Aminoimidazole Carboxamide ,Islet ,Lipids ,Rats ,Insulin oscillation ,DNA-Binding Proteins ,Glucose ,Endocrinology ,medicine.anatomical_structure ,CCAAT-Enhancer-Binding Proteins ,biology.protein ,GLUT2 ,Fatty Acid Synthases ,Sterol Regulatory Element Binding Protein 1 ,Research Article ,Transcription Factors - Abstract
Accumulation of intracellular lipid by pancreatic islet β-cells has been proposed to inhibit normal glucose-regulated insulin secretion (‘glucolipotoxicity’). In the present study, we determine whether over-expression in rat islets of the lipogenic transcription factor SREBP1c (sterol-regulatory-element-binding protein-1c) affects insulin release, and whether changes in islet lipid content may be reversed by activation of AMPK (AMP-activated protein kinase). Infection with an adenovirus encoding the constitutively active nuclear fragment of SREBP1c resulted in expression of the protein in approx. 20% of islet cell nuclei, with a preference for β-cells at the islet periphery. Real-time PCR (TaqMan®) analysis showed that SREBP1c up-regulated the expression of FAS (fatty acid synthase; 6-fold), acetyl-CoA carboxylase-1 (2-fold), as well as peroxisomal-proliferator-activated receptor-γ (7-fold), uncoupling protein-2 (1.4-fold) and Bcl2 (B-cell lymphocytic-leukaemia proto-oncogene 2; 1.3-fold). By contrast, levels of pre-proinsulin, pancreatic duodenal homeobox-1, glucokinase and GLUT2 (glucose transporter isoform-2) mRNAs were unaltered. SREBP1c-transduced islets displayed a 3-fold increase in triacylglycerol content, decreased glucose oxidation and ATP levels, and a profound inhibition of glucose-, but not depolarisation-, induced insulin secretion. Culture of islets with the AMPK activator 5-amino-4-imidazolecarboxamide riboside decreased the expression of the endogenous SREBP1c and FAS genes, and reversed the effect of over-expressing active SREBP1c on FAS mRNA levels and cellular triacylglycerol content. We conclude that SREBP1c over-expression, even when confined to a subset of β-cells, leads to defective insulin secretion from islets and may contribute to some forms of Type II diabetes.
- Published
- 2004
45. Direct Activation of AMP-activated Protein Kinase Stimulates Nitric-oxide Synthesis in Human Aortic Endothelial Cells
- Author
-
John M. C. Connell, Ian P. Salt, John R. Petrie, Fabienne Foufelle, Gwyn W. Gould, and Valerie A. Morrow
- Subjects
Nitric Oxide Synthase Type III ,Endothelium ,AMP-Activated Protein Kinases ,Protein Serine-Threonine Kinases ,Nitric Oxide ,Biochemistry ,Enzyme activator ,AMP-activated protein kinase ,Multienzyme Complexes ,Enos ,medicine ,Humans ,Phosphorylation ,Protein kinase A ,Molecular Biology ,Protein kinase B ,Aorta ,Cells, Cultured ,biology ,Chemistry ,AMPK ,Cell Biology ,Ribonucleotides ,Aminoimidazole Carboxamide ,biology.organism_classification ,Precipitin Tests ,Cell biology ,Enzyme Activation ,medicine.anatomical_structure ,biology.protein ,Endothelium, Vascular ,Nitric Oxide Synthase - Abstract
Recent studies have indicated that endothelial nitric-oxide synthase (eNOS) is regulated by reversible phosphorylation in intact endothelial cells. AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and activate eNOS at Ser-1177 in vitro, yet the function of AMPK in endothelium is poorly characterized. We therefore determined whether activation of AMPK with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) stimulated NO production in human aortic endothelial cells. AICAR caused the time- and dose-dependent stimulation of AMPK activity, with a concomitant increase in eNOS Ser-1177 phosphorylation and NO production. AMPK was associated with immunoprecipitates of eNOS, yet this was unaffected by increasing concentrations of AICAR. AICAR also caused the time- and dose-dependent stimulation of protein kinase B phosphorylation. To confirm that the effects of AICAR were indeed mediated by AMPK, we utilized adenovirus-mediated expression of a dominant negative AMPK mutant. Expression of dominant negative AMPK attenuated AICAR-stimulated AMPK activity, eNOS Ser-1177 phosphorylation and NO production and was without effect on AICAR-stimulated protein kinase B Ser-473 phosphorylation or NO production stimulated by insulin or A23187. These data suggest that AICAR-stimulated NO production is mediated by AMPK as a consequence of increased Ser-1177 phosphorylation of eNOS. We propose that stimuli that result in the acute activation of AMPK activity in endothelial cells stimulate NO production, at least in part due to phosphorylation and activation of eNOS. Regulation of endothelial AMPK therefore provides an additional mechanism by which local vascular tone may be controlled.
- Published
- 2003
46. Stéatose hépatique et stress du réticulum endoplasmique
- Author
-
Mélissa Flamment and Fabienne Foufelle
- Subjects
Calcium metabolism ,medicine.medical_specialty ,Endocrinology ,Chemistry ,Internal medicine ,medicine ,General Medicine ,General Biochemistry, Genetics and Molecular Biology ,Homeostasis - Published
- 2012
47. Stimulation of Acetyl-CoA Carboxylase Gene Expression by Glucose Requires Insulin Release and Sterol Regulatory Element Binding Protein 1c in Pancreatic MIN6 β-Cells
- Author
-
Fabienne Foufelle, C Andreolas, Gabriela da Silva Xavier, Pascal Ferré, Fernando Lopez-Casillas, Guy A. Rutter, Frédérique Diraison, Chao Zhao, and Aniko Varadi
- Subjects
Transcriptional Activation ,medicine.medical_specialty ,Transcription, Genetic ,Endocrinology, Diabetes and Metabolism ,medicine.medical_treatment ,Genetic Vectors ,Transfection ,Gene Expression Regulation, Enzymologic ,Cell Line ,Potassium Chloride ,Islets of Langerhans ,Acetyltransferases ,Internal medicine ,Insulin Secretion ,Gene expression ,Internal Medicine ,medicine ,Animals ,Insulin ,Promoter Regions, Genetic ,biology ,Sterol response element binding ,Acetyl-CoA carboxylase ,Recombinant Proteins ,Sterol regulatory element-binding protein ,Pyruvate carboxylase ,DNA-Binding Proteins ,Insulin receptor ,Glucose ,Endocrinology ,Verapamil ,Lipotoxicity ,CCAAT-Enhancer-Binding Proteins ,biology.protein ,Sterol Regulatory Element Binding Protein 1 ,Acetyl-CoA Carboxylase ,Transcription Factors - Abstract
Acetyl-CoA carboxylase I (ACCI) is a key lipogenic enzyme whose induction in islet β-cells may contribute to glucolipotoxicity. Here, we provide evidence that enhanced insulin release plays an important role in the activation of this gene by glucose. Glucose (30 vs. 3 mmol/l) increased ACCI mRNA levels ∼4-fold and stimulated ACCI (pII) promoter activity >30-fold in MIN6 cells. The latter effect was completely suppressed by blockade of insulin release or of insulin receptor signaling. However, added insulin substantially, but not completely, mimicked the effects of glucose, suggesting that intracellular metabolites of glucose may also contribute to transcriptional stimulation. Mutational analysis of the ACCI promoter, and antibody microinjection, revealed that the effect of glucose required sterol response element binding protein (SREBP)-1c. Moreover, adenoviral transduction with dominant-negative-acting SREBP1c blocked ACCI gene induction, whereas constitutively active SREBP1c increased ACCI mRNA levels. Finally, glucose also stimulated SREBP1c transcription, although this effect was independent of insulin release. These data suggest that glucose regulates ACCI gene expression in the β-cell by complex mechanisms that may involve the covalent modification of SREBP1c. However, overexpression of SREBP1c also decreased glucose-stimulated insulin release, implicating SREBP1c induction in β-cell lipotoxicity in some forms of type 2 diabetes.
- Published
- 2002
48. AJP-cell begins a theme series on cellular mechanisms of endoplasmic reticulum stress signaling in health and disease
- Author
-
Paul A. Insel, Sophie Lotersztajn, Eric Chevet, and Fabienne Foufelle
- Subjects
Physiology ,Mechanism (biology) ,Endoplasmic reticulum ,Stress signaling ,Cell ,Cell Biology ,Disease ,Biology ,Endoplasmic Reticulum ,Endoplasmic Reticulum Stress ,Transmembrane protein ,Cell biology ,medicine.anatomical_structure ,Unfolded protein response ,medicine ,Animals ,Humans ,Biogenesis ,Signal Transduction - Abstract
over the past decade, endoplasmic reticulum (ER) stress signaling has emerged as an essential mechanism at the crossroads of cellular functions. Indeed, beyond the instrumental roles of the ER in the biogenesis of secretory and transmembrane proteins, and in the control of lipid balance or in
- Published
- 2014
49. Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: a mechanistic insight
- Author
-
Nicolas Loiseau, Agnieszka Blachnio-Zabielska, Clare Stretton, Rhéa Khoury, Sophie Turban, Harinder S. Hundal, Rana Mahfouz, Eric Hajduch, Christopher Lipina, Pascal Ferré, Olivier Bourron, Fabienne Foufelle, Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Bialystok Med Univ, University of Dundee, ToxAlim (ToxAlim), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), College of Life Sciences, Service de diabétologie [CHU Pitié-Salpétrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université, Pathologies nutritionnelles et métaboliques : obésité et diabète, Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR58-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers (CRC (UMR_S 872)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche des Cordeliers ( CRC ), Université Paris Diderot - Paris 7 ( UPD7 ) -École pratique des hautes études ( EPHE ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), ToxAlim ( ToxAlim ), Institut National Polytechnique [Toulouse] ( INP ) -Institut National de la Recherche Agronomique ( INRA ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse ( ENVT ), Institut National Polytechnique de Toulouse ( INPT ) -Institut National Polytechnique de Toulouse ( INPT ), Assistance publique - Hôpitaux de Paris (AP-HP)-CHU Pitié-Salpêtrière [APHP], Université Paris Descartes - Paris 5 (UPD5)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Medical University of Białystok (MUB), Toxicologie Intégrative & Métabolisme (ToxAlim-TIM), Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Societe Francophone du Diabete (ANTADIR grant), Fondation pour Recherche Medicale (Equipe) [FRM DEQ20140329504], Agence Nationale de la Recherche (ANR) [ANR 11 BSV1 03101-Crisalis], Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), HAL UPMC, Gestionnaire, Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Service de Diabétologie [CHU Pitié-Salpétrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Pitié-Salpêtrière [APHP], Ecosystèmes Insulaires Océaniens (UMR 241) (EIO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Louis Malardé [Papeete] (ILM), and Institut de Recherche pour le Développement (IRD)-Université de la Polynésie Française (UPF)
- Subjects
Cellular differentiation ,Muscle Fibers, Skeletal ,lcsh:Medicine ,Biochemistry ,Mice ,chemistry.chemical_compound ,Glucose Metabolism ,Cell Signaling ,Insulin Signaling Cascade ,Insulin ,Myocyte ,Protein Phosphatase 2 ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,Protein Kinase C ,Multidisciplinary ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,biology ,Myogenesis ,Lipids ,Signaling Cascades ,medicine.anatomical_structure ,Carbohydrate Metabolism ,Anatomy ,Signal transduction ,Research Article ,Signal Transduction ,Cell Physiology ,Ceramide ,Primary Cell Culture ,Muscle Tissue ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Ceramides ,Caveolins ,[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathology ,medicine ,Animals ,Humans ,Muscle, Skeletal ,Protein kinase B ,Muscle Cells ,Sphingolipids ,lcsh:R ,Biology and Life Sciences ,Skeletal muscle ,Cell Biology ,Cell Metabolism ,Rats ,Insulin receptor ,Biological Tissue ,Metabolism ,Gene Expression Regulation ,chemistry ,biology.protein ,lcsh:Q ,Proto-Oncogene Proteins c-akt ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
International audience; Ceramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies.
- Published
- 2014
50. Sterol-regulatory-element-binding protein I c mediates insulin action on hepatic gene expression
- Author
-
Fabienne Foufelle, Pascal Ferré, Dominique Bécard, Marc Foretz, Dalila Azzout-Marniche, FORETZ, Marc, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE)
- Subjects
medicine.medical_treatment ,MESH: Insulin ,[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Biochemistry ,MESH: Mammals ,MESH: CCAAT-Enhancer-Binding Proteins ,MESH: Sterol Regulatory Element Binding Protein 1 ,03 medical and health sciences ,0302 clinical medicine ,Mediator ,Gene expression ,medicine ,MESH: Animals ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Transcription factor ,030304 developmental biology ,[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,0303 health sciences ,biology ,Glucokinase ,MESH: Glucagon ,GRB10 ,Insulin ,MESH: Energy Metabolism ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,MESH: Transcription Factors ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,MESH: Gene Expression Regulation ,IRS2 ,MESH: Glucose ,Insulin receptor ,MESH: Homeostasis ,030220 oncology & carcinogenesis ,MESH: Glycolysis ,biology.protein ,MESH: DNA-Binding Proteins ,MESH: Liver - Abstract
Effects of insulin on the expression of liver-specific genes are part of the adaptive mechanisms aimed at maintaining energy homeostasis in mammals. When the diet is rich in carbohydrates, secreted insulin stimulates the expression of genes for enzymes involved in glucose utilization (glucokinase, L-type pyruvate kinase and lipogenic enzymes) and inhibits genes for enzymes involved in glucose production (phosphenolpyruvate carboxykinase). The mechanisms by which insulin controls the expression of these genes have been poorly understood. Recently, the transcription factor sterol-regulatory-element-binding protein 1c has been proposed as a key mediator of insulin transcriptional effects. Here we review the evidence that has led to this proposal and the consequences for our understanding of insulin effects in physiological or pathological conditions.
- Published
- 2001
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.