1. Exploring the Effect of Fidgetin-Like 1 on Colorectal Cancer Through Tissue Chip and In Vitro Experiments
- Author
-
Yunxing Xu, Yucheng Shen, Chen Zhang, Liangfeng Zheng, Feiyue Ji, Jin Chen, Shouliang Cheng, and Yu Zheng
- Subjects
Medicine - Abstract
Background: Fidgetin-like 1 (FIGNL1) is extensively overexpressed in a variety of cancers. It facilitates non‑small cell lung cancer tumor cell proliferation and hepatocellular carcinoma formation due to abnormal DNA repair. Clinically relevant data indicates that its high expression is linked with the poor prognosis of patients with renal clear-cell carcinoma, low-grade gliomas, and hepatocellular carcinoma. Nevertheless, the scope of FIGNL1’s involvement in cancer, particularly colorectal cancer (CRC), remains unclear. Aims: To investigate the function of FIGNL1 in CRC. Study Design: Cell culture study Methods: The TCGA database and immunohistochemistry analysis were employed to investigate FIGNL1 expression in CRC tissue. A cell viability assay was performed using the Cell Counting Kit-8. The cell migration and invasion were evaluated using the transwell assay. Small interfering RNA (siRNA) transfection was conducted to knockdown FIGNL1 expression. Infection with FIGNL1 overexpression lentivirus was performed to promote FIGNL1 overexpression. The STRING database was employed for predicting protein interaction. Results: FIGNL1 was substantially upregulated in human CRC tissues and was associated with TNM stages and lymph node metastasis in patients. The inhibition of CRC cell proliferation, migration, and invasion in Caco-2 cells was achieved by silencing FIGNL1 using siRNA. Additional investigations suggested that FIGNL1 overexpression could promote CRC cell proliferation, migration, and invasion via P38 signaling pathway activation in Colo-205 cells. Subsequent experiments demonstrated that FIGNL1-mediated P38 phosphorylation was contingent upon SPIDR interaction. Conclusion: These results implied that FIGNL1 was a potential anticancer drug target, which also offered a novel strategy for future CRC treatment.
- Published
- 2024
- Full Text
- View/download PDF