1. Development of a small molecule that corrects misfolding and increases secretion of Z α 1 ‐antitrypsin
- Author
-
Martin Rüdiger, Chun-wa Chung, Jonathan P. Hutchinson, Christopher C. Arico-Muendel, Svetlana L. Belyanskaya, Allison Olszewski, Nerina Dodic, Duncan S. Holmes, Anthony Dossang, Andrew C. Pearce, Alistair M. Jagger, Steve Wilson, Adriana Ordóñez, David A. Lomas, Toral Jakhria, Iain Uings, Hitesh Dave, Zhengrong Zhu, Stefan J. Marciniak, Alexis Denis, Lionel Trottet, Kathrine J. Smith, Murray J. B. Brown, Imran Haq, James A. Irving, Steve Skinner, Margaret Neu, Diana Klimaszewska, Peter Eddershaw, Riccardo Ronzoni, James E. Rowedder, Andrew Brewster, John Liddle, Emilie Jigorel, Jeffrey A. Messer, Ken Lind, Rebecca Terry, Lomas, David A [0000-0003-2339-6979], Irving, James A [0000-0003-3204-6356], Ronzoni, Riccardo [0000-0002-3981-8104], Pearce, Andrew C [0000-0002-4698-037X], and Apollo - University of Cambridge Repository
- Subjects
0301 basic medicine ,Genetically modified mouse ,Medicine (General) ,Mutant ,α1-antitrypsin deficiency ,QH426-470 ,Endoplasmic Reticulum ,medicine.disease_cause ,Article ,Mice ,03 medical and health sciences ,R5-920 ,0302 clinical medicine ,alpha 1-Antitrypsin Deficiency ,Chemical Biology ,Genetics ,small molecule corrector ,medicine ,Animals ,Secretion ,protein misfolding ,Mutation ,Chemistry ,Endoplasmic reticulum ,Articles ,Molecular biology ,Small molecule ,In vitro ,emphysema ,030104 developmental biology ,alpha 1-Antitrypsin ,Hepatocytes ,Molecular Medicine ,Genetics, Gene Therapy & Genetic Disease ,liver disease ,030217 neurology & neurosurgery ,Intracellular ,α1‐antitrypsin deficiency - Abstract
Severe α1‐antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1‐antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA‐encoded chemical library to undertake a high‐throughput screen to identify small molecules that bind to, and stabilise Z α1‐antitrypsin. The lead compound blocks Z α1‐antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1‐antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1‐antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that “mutation ameliorating” small molecules can block the aberrant polymerisation that underlies Z α1‐antitrypsin deficiency., A chemistry campaign has developed a small molecule that stabilises the severe Z deficiency mutant of α1‐antitrypsin. The lead compound binds to a cryptic pocket and blocks the conformational change and pathological polymerisation that underlie α1‐antitrypsin deficiency.
- Published
- 2021
- Full Text
- View/download PDF