Kevin Truyaert, Koen Van Den Abeele, Steven Delrue, Vladislav Aleshin, Tomsk State University [Tomsk], Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Katholieke Universiteit Leuven Campus Kortrijk, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), The research leading to these results has gratefully received funding from Internal Funds KU Leuven (C24/15/021) and joint doctorate financing by I-SITE ULNE and KU Leuven. One of authors (Vladislav Aleshin) is also grateful to the Tomsk State University competitiveness improvement program., Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique (LIA LICS/LEMAC), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), AcknowledgmentsThe research leading to these results has gratefully receivedfunding from Internal Funds KU Leuven (C24/15/021) and jointdoctorate financing by I-SITE ULNE and KU Leuven. One of authors(Vladislav Aleshin) is also grateful to the Tomsk State Universitycompetitiveness improvement program., and ANR-16-IDEX-0004,ULNE,ULNE(2016)
In this paper, we present the theoretical formula for calculating a friction-induced energy loss in a mechanical contact system consisting of two convex axisymmetric bodies subject to arbitrarily varying oblique loading. Non-flat contact geometry engenders a particular regime, partial slip, in which weakly compressed areas of the contact zone slip, while strongly compressed ones stick. Mechanical energy is transformed into heat only in the slip area in which two field characteristics should be calculated: the local infinitesimal slip distance distribution and shear stress. Their product equals the spatial distribution of the energy loss or heat source density, while the integration over the slip zone produces the global energy loss. The energetic characteristics are obtained in a general situation. In the proposed method, energy losses can be calculated at any time during a loading protocol, in the general case of an arbitrary load expressed in terms of normal and tangential displacements. This is a step forward in comparison to more traditional approaches in contact mechanics allowing to calculate the energy loss per period in the case where the contact is excited by a single periodic input. All required contact characteristics, including displacement and stress distributions, are provided by the semianalytical Method of Memory Diagrams (MMD) that has initially been developed to obtain memory-dependent solutions to the problem of frictional contact between axisymmetric profiles and has later been generalized for rough surfaces. In this work, the loading is limited to two dimensions: one normal and one tangential, as MMD is two-dimensional. The tangential loading is therefore colinear with the tangential displacement. Correspondingly, the proposed solution is exact for axisymmetric bodies and is approximately valid in the case of rough surfaces for which the energy loss per unit nominal area is calculated. The obtained theoretical results for energy dissipation are compared to analytical and numerical calculations for periodic and non-periodic loading situations, illustrating the potential of this method in realistic contact settings. ispartof: International Journal Of Solids And Structures vol:158 pages:268-276 status: published