Marie Farge, H. K. Moffatt, Dmitry Kolomenskiy, Kai Schneider, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge [UK] (CAM), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Mathématiques et Informatique [Marseille] (CMI), Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
The Lighthill–Weis-Fogh ‘clap–fling–sweep’ mechanism for lift generation in insect flight is re-examined. The novelty of this mechanism lies in the change of topology (the ‘break’) that occurs at a critical instanttcwhen two wings separate at their ‘hinge’ point as ‘fling’ gives way to ‘sweep’, and the appearance of equal and opposite circulations around the wings at this critical instant. Our primary aim is to elucidate the behaviour near the hinge point as timetpasses throughtc. First, Lighthill's inviscid potential flow theory is reconsidered. It is argued that provided the linear and angular accelerations of the wings are continuous, the velocity field varies continuously through the break, although the pressure field jumps instantaneously att=tc. Then, effects of viscosity are considered. Near the hinge, the local Reynolds number is very small and local similarity solutions imply a logarithmic (integrable) singularity of the pressure jump across the hinge just before separation, in contrast to the ‘negligible pressure jump’ of inviscid theory invoked by Lighthill. We also present numerical simulations of the flow using a volume penalization technique to represent the motion of the wings. For Reynolds number equal to unity (based on wing chord), the results are in good agreement with the analytical solution. At a realistic Reynolds number of about 20, the flow near the hinge is influenced by leading-edge vortices, but local effects still persist. The lift coefficient is found to be much greater than that in the corresponding inviscid flow.