Post-treatment production analyses for hydraulic fracturing treatments with conventional crosslinked gel or slickwater often indicate that the treatments do not achieve the designed stimulation effectiveness, which could be attributed to non-optimal proppant placement and/or significantly damaged fracture conductivity. Although conventional crosslinked fluids are observed to provide good proppant suspension in laboratory environments, they might not provide the desired proppant transport under downhole conditions. Crosslinked fluids are known to be difficult to clean up, and thus are notorious for imparting gel damage to proppant pack and formation. Slickwater can be used to mitigate gel damage by reducing the effective polymer loadings, but consequential extreme proppant settling and banking problems reduce the chance of achieving fracture performance. Several proppant placement techniques have been developed to generate highly conductive paths for hydrocarbons to flow from an unconventional reservoir to the wellbore, such as hybrid fracturing, reverse hybrid fracturing, and channel fracturing, each of which predominantly rely upon high viscosity fluids to carry the proppant to the designated location. This paper presents a non-traditional fracturing fluid system and application technique with near perfect proppant suspension and transport, high fracture conductivity, and self-diverting characteristics. The revolutionary fracturing fluid system employs engineered packing of particle domains for proppant suspension mechanics that are significantly different from crosslinked polymer systems which use polymer chain overlap and inter-chain crosslinking to generate viscosity governed proppant transport. The unique gel particle structure perfectly suspends proppant for several hours at reservoir conditions to facilitate better transverse and vertical placement of proppant in the fracture and significantly increases the fractured surface area, which is one of most important factors in unconventional reservoir production. The self-diverting tendencies offer the potential to maximize created fracture area while simultaneously reducing the treating fluid volumes without the addition of costly diverting additives. The degradability of the fluid can be controlled at reservoir conditions by fluid pH and/or breaker loading to yield near 100% regained proppant pack conductivity. This paper discusses the evolution of the technology, and laboratory results for this unique fluid system. The system can unlock reservoir potential in areas requiring high fractured surface area and high regained conductivity, such as unconventional liquid-rich formations.