Félix Foutel-Rodier, François Blanquart, Philibert Courau, Peter Czuppon, Jean-Jil Duchamps, Jasmine Gamblin, Élise Kerdoncuff, Rob Kulathinal, Léo Régnier, Laura Vuduc, Amaury Lambert, Emmanuel Schertzer, Université du Québec à Montréal = University of Québec in Montréal (UQAM), Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Infection, Anti-microbiens, Modélisation, Evolution (IAME (UMR_S_1137 / U1137)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut de Systématique, Evolution, Biodiversité (ISYEB ), Muséum national d'Histoire naturelle (MNHN)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), University of California [Berkeley] (UC Berkeley), University of California (UC), Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University of Vienna [Vienna], SMILE - Stochastic models for the inference of life evolution, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Centre interdisciplinaire de recherche en biologie (CIRB), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Labex MemoLife, Institute for Evolution and Biodiversity, Department of Molecular and Cellular Biology [Berkeley, CA, USA], Université Paris-Saclay, Faculty of Mathematics [Vienne, Autriche], and Duchamps, Jean-Jil
International audience; We present a unifying, tractable approach for studying the spread of viruses causing complex diseases that require to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual's infection age, i.e., the time elapsed since infection, 1. The age distribution $n(t, a)$ of the population at time $t$ can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. 2. The frequency of type $i$ at time $t$ is simply obtained by integrating the probability $p(a, i)$ of being in state $i$ at age a against the age distribution $n(t, a)$. The advantage of this approach is three-fold. First, regardless of the number of types, macroscopic observables (e.g., incidence or prevalence of each type) only rely on a one-dimensional PDE "decorated" with types. This representation induces a simple methodology based on the McKendrick-von Foerster PDE with Poisson sampling to infer and forecast the epidemic. We illustrate this technique using a French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, here the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual.