5 results on '"Scrivanti, Gabriele"'
Search Results
2. A CNC approach for Directional Total Variation
- Author
-
Scrivanti, Gabriele, Chouzenoux, Emilie, and Pesquet, Jean-Christophe
- Subjects
Mathematics - Numerical Analysis - Abstract
The core of many approaches for the resolution of variational inverse problems arising in signal and image processing consists of promoting the sought solution to have a sparse representation in a well-suited space. A crucial task in this context is the choice of a good sparsity prior that can ensure a good trade-off between the quality of the solution and the resulting computational cost. The recently introduced Convex-Non-Convex (CNC) strategy appears as a great compromise, as it combines the high qualitative performance of non-convex sparsity-promoting functions with the convenience of dealing with convex optimization problems. This work proposes a new variational formulation to implement CNC approach in the context of image denoising. By suitably exploiting duality properties, our formulation allows to encompass sophisticated directional total variation (DTV) priors. We additionally propose an efficient optimisation strategy for the resulting convex minimisation problem. We illustrate on numerical examples the good performance of the resulting CNC-DTV method, when compared to the standard convex total variation denoiser., Comment: Accepted for EUSIPCO 2022 - 30th European Signal Processing Conference, Aug 2022, Belgrade, Serbia
- Published
- 2022
3. A Variational Approach for Joint Image Recovery and Feature Extraction Based on Spatially-Varying Generalised Gaussian Models
- Author
-
Chouzenoux, Emilie, Corbineau, Marie-Caroline, Pesquet, Jean-Christophe, and Scrivanti, Gabriele
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Mathematics - Numerical Analysis - Abstract
The joint problem of reconstruction / feature extraction is a challenging task in image processing. It consists in performing, in a joint manner, the restoration of an image and the extraction of its features. In this work, we firstly propose a novel nonsmooth and non-convex variational formulation of the problem. For this purpose, we introduce a versatile generalised Gaussian prior whose parameters, including its exponent, are space-variant. Secondly, we design an alternating proximal-based optimisation algorithm that efficiently exploits the structure of the proposed non-convex objective function. We also analyse the convergence of this algorithm. As shown in numerical experiments conducted on joint deblurring/segmentation tasks, the proposed method provides high-quality results.
- Published
- 2022
4. Non-convex Super-resolution of OCT images via sparse representation
- Author
-
Scrivanti, Gabriele, Calatroni, Luca, Morigi, Serena, Nicholson, Lindsay, and Achim, Alin
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Mathematics - Numerical Analysis - Abstract
We propose a non-convex variational model for the super-resolution of Optical Coherence Tomography (OCT) images of the murine eye, by enforcing sparsity with respect to suitable dictionaries learnt from high-resolution OCT data. The statistical characteristics of OCT images motivate the use of {\alpha}-stable distributions for learning dictionaries, by considering the non-Gaussian case, {\alpha}=1. The sparsity-promoting cost function relies on a non-convex penalty - Cauchy-based or Minimax Concave Penalty (MCP) - which makes the problem particularly challenging. We propose an efficient algorithm for minimizing the function based on the forward-backward splitting strategy which guarantees at each iteration the existence and uniqueness of the proximal point. Comparisons with standard convex L1-based reconstructions show the better performance of non-convex models, especially in view of further OCT image analysis, Comment: 4 pages, 2 figures, 1 table, 1 algorithm, submitted to ISBI2021
- Published
- 2020
5. Non-Convex Super-Resolution Of Oct Images Via Sparse Representation
- Author
-
Lindsay B. Nicholson, Luca Calatroni, Alin Achim, Gabriele Scrivanti, Serena Morigi, Dipartimento di Matematica [Bologna], Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Morphologie et Images (MORPHEME), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Signal, Images et Systèmes (Laboratoire I3S - SIS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), University of Bristol [Bristol], Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), Calatroni, Luca, Scrivanti Gabriele, Luca Calatroni, Serena Morigi, L. Nicholson, and A. Achim
- Subjects
FOS: Computer and information sciences ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,MathematicsofComputing_NUMERICALANALYSIS ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,02 engineering and technology ,Image (mathematics) ,Optical coherence tomography ,FOS: Electrical engineering, electronic engineering, information engineering ,FOS: Mathematics ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Numerical Analysis ,Uniqueness ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,medicine.diagnostic_test ,Image and Video Processing (eess.IV) ,Regular polygon ,Optical Coherence Tomography, Super-Resolution, Non-Convex Regularisation, Sparse Representation ,[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] ,020206 networking & telecommunications ,Numerical Analysis (math.NA) ,Sparse approximation ,Function (mathematics) ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,Electrical Engineering and Systems Science - Image and Video Processing ,Minimax ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,020201 artificial intelligence & image processing ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Algorithm ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Coherence (physics) - Abstract
We propose a non-convex variational model for the super-resolution of Optical Coherence Tomography (OCT) images of the murine eye, by enforcing sparsity with respect to suitable dictionaries learnt from high-resolution OCT data. The statistical characteristics of OCT images motivate the use of {\alpha}-stable distributions for learning dictionaries, by considering the non-Gaussian case, {\alpha}=1. The sparsity-promoting cost function relies on a non-convex penalty - Cauchy-based or Minimax Concave Penalty (MCP) - which makes the problem particularly challenging. We propose an efficient algorithm for minimizing the function based on the forward-backward splitting strategy which guarantees at each iteration the existence and uniqueness of the proximal point. Comparisons with standard convex L1-based reconstructions show the better performance of non-convex models, especially in view of further OCT image analysis, Comment: 4 pages, 2 figures, 1 table, 1 algorithm, submitted to ISBI2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.