Frédéric Havet, Eli Berger, Zilin Jiang, Ron Aharoni, Maria Chudnovsky, Department of Mathematics (TECHNION), Technion - Israel Institute of Technology [Haifa], University of Haifa [Haifa], Columbia University [New York], Combinatorics, Optimization and Algorithms for Telecommunications (COATI), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Massachusetts Institute of Technology (MIT), COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Given a system $(G_1, \ldots ,G_m)$ of graphs on the same vertex set $V$, a cooperative coloring is a choice of vertex sets $I_1, \ldots ,I_m$, such that $I_j$ is independent in $G_j$ and $\bigcup_{j=1}^{m}I_j = V$. For a class $\mathcal{G}$ of graphs, let $m_{\mathcal{G}}(d)$ be the minimal $m$ such that every $m$ graphs from $\mathcal{G}$ with maximum degree $d$ have a cooperative coloring. We prove that $\Omega(\log\log d) \le m_\mathcal{T}(d) \le O(\log d)$ and $\Omega(\log d)\le m_\mathcal{B}(d) \le O(d/\log d)$, where $\mathcal{T}$ is the class of trees and $\mathcal{B}$ is the class of bipartite graphs., Comment: 8 pages, 2 figures, accepted to the Electronic Journal of Combinatorics, corrections suggested by the referees have been incorporated