1. Adaptive Game Playing Using Multiplicative Weights
- Author
-
Yoav Freund and Robert E. Schapire
- Subjects
Computer Science::Computer Science and Game Theory ,Economics and Econometrics ,Sequential game ,Normal-form game ,Symmetric game ,ComputingMilieux_PERSONALCOMPUTING ,Strategy ,Example of a game without a value ,Repeated game ,Algorithmic game theory ,Game tree ,Mathematical economics ,Algorithm ,Finance ,Mathematics - Abstract
We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the multiplicative-weight methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler divergence. This analysis yields a new, simple proof of the min–max theorem, as well as a provable method of approximately solving a game. A variant of our game-playing algorithm is proved to be optimal in a very strong sense. Journal of Economic Literature Classification Numbers: C44, C70, D83.
- Published
- 1999
- Full Text
- View/download PDF