1. Worst-Case Convergence Analysis of Inexact Gradient and Newton Methods Through Semidefinite Programming Performance Estimation
- Author
-
Etienne de Klerk, Adrien B. Taylor, François Glineur, Department of Econometrics and Operations Research (Tilburg University), Tilburg University [Netherlands], Université Catholique de Louvain = Catholic University of Louvain (UCL), Statistical Machine Learning and Parsimony (SIERRA), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), François Glineur is supported by the Belgian Interuniversity Attraction Poles, and by the ARC grant 13/18-054 (Communauté française de Belgique). Adrien Taylor acknowledges support from the European Research Council (grant SEQUOIA 724063)., Research Group: Operations Research, Econometrics and Operations Research, Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), UCL - SST/ICTM/INMA - Pôle en ingénierie mathématique, and UCL - SSH/LIDAM/CORE - Center for operations research and econometrics
- Subjects
0211 other engineering and technologies ,010103 numerical & computational mathematics ,02 engineering and technology ,01 natural sciences ,Theoretical Computer Science ,semidefinite programming ,performance estimation problems ,Convergence (routing) ,FOS: Mathematics ,Applied mathematics ,0101 mathematics ,[MATH]Mathematics [math] ,Mathematics - Optimization and Control ,90C22, 90C26, 90C30 ,Mathematics ,Semidefinite programming ,gradient method ,021103 operations research ,interior point methods ,Cauchy distribution ,inexact search direction ,semidefinite programming ,Sketch ,inexact search directions ,Optimization and Control (math.OC) ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Gradient descent ,Convex function ,Gradient method ,Software ,Interior point method - Abstract
We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton's method for self-concordant functions, including the case of inexact search directions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori and Teboulle [Mathematical Programming, 145(1-2):451-482, 2014], and extends recent performance estimation results for the method of Cauchy by the authors [Optimization Letters, 11(7), 1185-1199, 2017]. To illustrate the applicability of the tools, we demonstrate a novel complexity analysis of short step interior point methods using inexact search directions. As an example in this framework, we sketch how to give a rigorous worst-case complexity analysis of a recent interior point method by Abernethy and Hazan [PMLR, 48:2520-2528, 2016]., Comment: 22 pages, 1 figure. Title of earlier version was "Worst-case convergence analysis of gradient and Newton methods through semidefinite programming performance estimation"
- Published
- 2020
- Full Text
- View/download PDF