39 results on '"nanostructuration"'
Search Results
2. Cellulose Nanocrystals from Native and Mercerized Cotton
- Author
-
Clara Jiménez-Saelices, François Jérôme, Xavier Falourd, Somia Haouache, karine cahier, Isabelle Capron, Bruno Pontoire, Fabrice Cousin, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), LLB - Matière molle et biophysique (MMB), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE07-0003,CELLOPLASM,Clivage de la liaison béta-1,4 glycosidique de la cellulose par plasma atmospherique non-thermique: mécanisme et application pour la production d'alkylglycosides(2016)
- Subjects
Biobased nanoparticles ,Cellulose nanocrystals ,[CHIM.POLY]Chemical Sciences/Polymers ,Materials science ,Polymers and Plastics ,Chemical engineering ,Nanostructuration ,Mercerization ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Cellulose II - Abstract
International audience; Nanocelluloses occur under various crystalline forms that are currently being selectively used for a wide variety of high performance materials. In the present study, two cellulose nanofibers (CF-I) were mercerized by alkaline treatment (CF-II) without degradation, the same molar mass of 560,000 g/mol was measured. Both samples were acid hydrolyzed, leading to cellulose nanocrystals in native (CNC-I) and mercerized (CNC-II) forms. This study focuses on the detailed characterization of these two nanoparticle morphologies (light and neutron scattering, TEM, AFM), surface chemistry (zetametry and surface charge), crystallinity (XRD, C-13 NMR), and average molar mass coupled to chromatographic techniques (SEC-MALLS-RI, A4F-MALLS-RI), revealing variations in the packing of the crystalline domains. The crystal size of CNC-II is reduced by half compared to CNC-I, with molar masses of individual chains of 41,000 g/mol and 22,000 g/mol for CNC-I and CNC-II, respectively, whereas the same surface charge density is measured. This study gives an example of complementary characterization techniques as well as results to help decipher the mechanism involved in mercerization.
- Published
- 2021
- Full Text
- View/download PDF
3. Controlled nanostructuration of cobalt oxyhydroxide electrode material for hybrid supercapacitors
- Author
-
François Weill, Jacob Olchowka, Liliane Guerlou-Demourgues, Ronan Invernizzi, Delphine Flahaut, Marie-Anne Dourges, Isabelle Baraille, Alexia Lemoine, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The authors would like to deeply thank AID as well as Bordeaux INP for financial support (PhD funding and research fees). The authors thank also Région Nouvelle Aquitaine and the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01) for financial support and fruitful discussions. Many thanks to Catherine Denage, Emmanuel Petit, Eric Lebraud, Jérôme Kalisky and Stéphane Relexans for their help in the characterization of the samples for MEB, ICP, XRD, TGA and conductivity analyses respectively., ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Technology ,Materials science ,chemistry.chemical_element ,Ionic bonding ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,7. Clean energy ,01 natural sciences ,Article ,ionic liquids ,chemistry.chemical_compound ,nanostructuration ,Specific surface area ,General Materials Science ,Supercapacitor ,Microscopy ,QC120-168.85 ,supercapacitors ,energy storage ,Precipitation (chemistry) ,QH201-278.5 ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Engineering (General). Civil engineering (General) ,021001 nanoscience & nanotechnology ,TK1-9971 ,cobalt oxyhydroxide ,0104 chemical sciences ,Descriptive and experimental mechanics ,chemistry ,Chemical engineering ,Ionic liquid ,Surface modification ,nanomaterial ,Electrical engineering. Electronics. Nuclear engineering ,TA1-2040 ,0210 nano-technology ,surface modification ,Cobalt - Abstract
International audience; Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.
- Published
- 2021
- Full Text
- View/download PDF
4. Simulation of nanosizing effects in the decomposition of Ca(BH4)2 through atomistic thin film models
- Author
-
Bartolomeo Civalleri, Marcello Baricco, Elisa Albanese, and Marta Corno
- Subjects
Calcium borohydride ,Work (thermodynamics) ,Quantum mechanical calculations ,Materials science ,Hydrogen ,010405 organic chemistry ,Enthalpy ,chemistry.chemical_element ,General Chemistry ,010402 general chemistry ,Borohydride ,01 natural sciences ,Decomposition ,Decomposition enthalpy ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Dehydrogenation ,Hydrogen storage materials ,Nanostructuration ,Thin film - Abstract
In this work, we model thin films of β-Ca(BH4)2 to understand how nanostructuration of the material can be an effective way to decrease the dehydrogenation enthalpy. Two different crystallographic faces of Ca(BH4)2 have been investigated (i.e., (001) and (101)), and two reaction pathways have been considered that release hydrogen through the formation of CaH2 and CaB6, respectively. Quantum mechanical calculations predict that size reduction from bulk to nanoscale leads to a sizeable decrease of the decomposition enthalpy of the borohydride of about 5 kJ/molH2. Therefore, the present results corroborate the evidence that nanostructured metal borohydrides show advantages for energy storage applications compared to their bulk counterparts.
- Published
- 2021
5. Influence of Nanostructuration on the Vibrational, Electronic and Optical Properties of CrSi 2 Thin Films
- Author
-
Nicole Fréty, Adrien Moll, Michel Ramonda, Patrick Hermet, David Maurin, Jean-Louis Bantignies, Erwan Oliviero, Bertrand Lenoir, Christophe Candolfi, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centrale de Technologie en Micro et Nanoélectronique CTM-LMCP, Université de Montpellier (UM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
optical properties ,Materials science ,Chromium silicide ,genetic structures ,chromium silicide ,thin film ,nanostructuration ,Physical and Theoretical Chemistry ,Thin film ,ComputingMilieux_MISCELLANEOUS ,Amorphous semiconductors ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,eye diseases ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,General Energy ,electron scattering ,vibrational properties ,Optoelectronics ,sense organs ,business ,Electron scattering ,amorphous semiconductor - Abstract
We report a detailed experimental investigation of the influence of the formation of nanocrystallites on the vibrational, electronic, and optical properties of CrSi2 thin films. Both amorphous and ...
- Published
- 2020
- Full Text
- View/download PDF
6. Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes
- Author
-
Margaux Haurat, Michel Dumon, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,core-shell particles ,Polymers ,Pharmaceutical Science ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,Analytical Chemistry ,supercritical CO2 ,lcsh:QD241-441 ,chemistry.chemical_compound ,foaming processes ,lcsh:Organic chemistry ,nanostructuration ,Drug Discovery ,Nano ,Polymethyl Methacrylate ,Physical and Theoretical Chemistry ,Methyl methacrylate ,Porosity ,batch-foaming ,chemistry.chemical_classification ,Organic Chemistry ,polymer foam ,Polymer ,Carbon Dioxide ,021001 nanoscience & nanotechnology ,PMMA ,Supercritical fluid ,0104 chemical sciences ,Amorphous solid ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Solubility ,Chemistry (miscellaneous) ,MAM ,Molecular Medicine ,Nanoparticles ,Extrusion ,0210 nano-technology ,Porous medium - Abstract
Organic polymers can be made porous via continuous or discontinuous expansion processes in scCO2. The resulting foams properties are controlled by the interplay of three groups of parameters: (i) Chemical, (ii) physico-chemical, and (iii) technological/process that are explained in this paper. The advantages and drawbacks of continuous (extrusion, injection foaming) or discontinuous (batch foaming) foaming processes in scCO2, will be discussed in this article, especially for micro or nano cellular polymers. Indeed, a challenge is to reduce both specific mass (e.g., &rho, <, 100 kg·, m&minus, 3) and cell size (e.g., average pore diameter ϕaveragepores <, 100 nm). Then a particular system where small &ldquo, objects&rdquo, (coreshells CS, block copolymer MAM) are perfectly dispersed at a micrometric to nanometric scale in poly(methyl methacrylate) (PMMA) will be presented. Such &ldquo, additives&rdquo, considered as foaming aids, are aimed at &ldquo, regulating&rdquo, the foaming and lowering the pore size and/or density of PMMA based foams. Differences between these additives will be shown. Finally, in a PMMA/20 wt% MAM blend, via a quasi one-step batch foaming, a &ldquo, porous to nonporous&rdquo, transition is observed in thick samples. A lower limit of pore size (around 50 nm) seems to arise.
- Published
- 2020
- Full Text
- View/download PDF
7. A multimaterial based on metallic copper and spinel oxide made by powder bed laser fusion: A new nanostructured material for inert anode dedicated to aluminum electrolysis
- Author
-
Valérie Baco-Carles, Pierre Chamelot, Isabelle Pasquet, Philippe Tailhades, Laurent Massot, Mathieu Gibilaro, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Laboratoire de Génie Chimique (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
0209 industrial biotechnology ,Materials science ,Additive manufacturing ,Cermet ,Oxide ,02 engineering and technology ,engineering.material ,7. Clean energy ,Industrial and Manufacturing Engineering ,law.invention ,Spinel ferrite ,chemistry.chemical_compound ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,020901 industrial engineering & automation ,0203 mechanical engineering ,law ,Powder bed fusion ,Génie chimique ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Selective laser melting ,Porosity ,Génie des procédés ,Inert ,Electrolysis ,Metallurgy ,Spinel ,Inert anode ,Metals and Alloys ,Cryolite ,Computer Science Applications ,020303 mechanical engineering & transports ,chemistry ,Modeling and Simulation ,Ceramics and Composites ,engineering ,Nanostructuration - Abstract
International audience; Coherent 3D parts of cermets, made of spinel ferrite and metallic copper, are prepared in a nitrogen atmosphere by powder bed additive manufacturing of a mixture of oxide and metallic powders. The cermets obtained are constituted by the association of blocks of about 500 μm, which create between them, a relatively large porosity (# 35%). Each block is subdivided into intimately nested zones that are either predominantly metallic or predominantly oxide type. In the metal parts, a dispersion of oxide crystals is observed, whose size varies from ten nanometers to a few micrometers. A similar distribution of metal particles in the oxide zones is also demonstrated. The chemical compositions of metallic and oxide phases are slightly different from those in the initial powders. Due to the high energy density of the laser, the melting temperature of the metal and oxides could be reached and therefore this could explain the chemical composition variations in the phases and the shape of oxide and metallic nanometric grains. The process used can therefore be described as powder bed fusion. These nanostructured cermets have been used as "inert" anodes for the electrolysis of aluminum in molten cryolite. Although penalized by a high porosity, 5 mm in diameter anodes allowed to carry out an electrolysis for 4 h. Since Spark Plasma Sintering can greatly reduce their porosity, while retaining their specific microstructure, the implementation of additive manufacturing for producing "inert" anodes is therefore of real interest.
- Published
- 2020
- Full Text
- View/download PDF
8. Design of 0–3 type nanocomposites using hydrothermal sintering
- Author
-
Stéphane Mornet, Graziella Goglio, Jiří Hejtmánek, Jirák Zdenĕk, Sonia Buffière, Alain Largeteau, Arnaud Ndayishimiye, Marie-Anne Dourges, Mythili Prakasam, Ondřej Kaman, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Physics, Chinese Academy of Sciences [Beijing] (CAS), and Czech Academy of Sciences [Prague] (CAS)
- Subjects
Materials science ,Nanoparticle ,Sintering ,02 engineering and technology ,01 natural sciences ,Hydrothermal circulation ,Hydrothermal Sintering ,0103 physical sciences ,General Materials Science ,Composites ,010302 applied physics ,Nanocomposite ,Mechanical Engineering ,Metals and Alloys ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,Manganite ,Grain growth ,Creep ,Chemical engineering ,Mechanics of Materials ,Low-Temperature Water-Assisted Densification ,0210 nano-technology ,Nanostructuration - Abstract
International audience; We report here the successful design of 0–3 type nanocomposites where 30 nm ferromagnetic metallically conducting cores of manganite La0.66Sr0.34MnO3 (LSMO) are discretely distributed in an insulating silica matrix. Starting from LSMO@SiO2 core@shell nanoparticles, hydrothermal sintering process was used as a low temperature densification route (300 °C, 350 MPa, 90 min) in presence of 0.2 M aqueous sodium hydroxide solution. This process based on a pressure solution creep in the contact zones between nanoparticles allows the design of complex microstructures preventing the grain growth of the cores and the formation of interphases between the cores and the matrix.
- Published
- 2018
- Full Text
- View/download PDF
9. Micro/Nanostructure Engineering of Epitaxial Piezoelectric α-Quartz Thin Films on Silicon
- Author
-
Benoit Charlot, Judith Oró-Soler, Pau Escofet-Majoral, David Sánchez-Fuentes, Qianzhe Zhang, Martí Gich, Guilhem Larrieu, Jaume Gazquez, Rudy Desgarceaux, Adrian Carretero-Genevrier, Andrés Gómez, Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Équipe Matériaux et Procédés pour la Nanoélectronique (LAAS-MPN), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), ANR-16-CE09-0006,Q-NOSS,Nanomateriaux à base de quartz intégrées sur silicium pour des applications capteurs(2016), European Research Council, Agence Nationale de la Recherche (France), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Sorbonne Université, Centre National de la Recherche Scientifique (France), Région Ile-de-France, Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Materials science ,Silicon ,Thin films ,Piezoelectricity ,chemistry.chemical_element ,Nanotechnology ,Hardware_PERFORMANCEANDRELIABILITY ,02 engineering and technology ,Epitaxy ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,Hardware_GENERAL ,Hardware_INTEGRATEDCIRCUITS ,Epitaxial growth ,General Materials Science ,Thin film ,Quartz ,010401 analytical chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Micro nanostructure ,chemistry ,0210 nano-technology ,Quartz silicon ,Nanostructuration - Abstract
The monolithic integration of sub-micron quartz structures on silicon substrates is a key issue for the future development of piezoelectric devices as prospective sensors with applications based on the operation in the high-frequency range. However, to date, it has not been possible to make existing quartz manufacturing methods compatible with integration on silicon and structuration by top-down lithographic techniques. Here, we report an unprecedented large-scale fabrication of ordered arrays of piezoelectric epitaxial quartz nanostructures on silicon substrates by the combination of soft-chemistry and three lithographic techniques: (i) laser interference lithography, (ii) soft nanoimprint lithography on Sr-doped SiO2 sol–gel thin films, and (iii) self-assembled SrCO3 nanoparticle reactive nanomasks. Epitaxial α-quartz nanopillars with different diameters (from 1 μm down to 50 nm) and heights (up to 2 μm) were obtained. This work demonstrates the complementarity of soft-chemistry and top-down lithographic techniques for the patterning of epitaxial quartz thin films on silicon while preserving its epitaxial crystallinity and piezoelectric properties. These results open up the opportunity to develop a cost-effective on-chip integration of nanostructured piezoelectric α-quartz MEMS with enhanced sensing properties of relevance in different fields of application., This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program, project SENSiSOFT (no. 803004); the French Agence Nationale pour la Recherche (ANR), project Q-NOSS ANR ANR-16-CE09-0006-01; the Spanish Ministry of Science Innovation and Universities in cofunding with European social funds through the Severo Ochoa Program for Centers of Excellence in R&D (SEV-2015-0496) and the Ramón y Cajal program (RyC-2012-11709 to J.G.); and the Generalitat de Catalunya (2017SGR00765). Q.Z. was financially supported by the China Scholarship Council (CSC) with no. 201506060170. Q.Z.’s work was done as a part of the PhD program in Materials Science at Universitat Autònoma de Barcelona. The authors thank the “Laboratorio de Microscopías Avanzadas-Instituto de Nanociencia de Aragón” for offering their expertise in the preparation of TEM cross sections. A. Crespi from XRD diffraction service is acknowledged for pole figure measurements. FEG-SEM instrumentation was facilitated by the Institut des Matériaux de Paris Centre (IMPC FR2482) and was funded by Sorbonne Université, CNRS and by the C’Nano projects of the Région Ile-de-France. We thank David Montero for performing the FEG-SEM images.
- Published
- 2020
- Full Text
- View/download PDF
10. Influence of Nanostructuration on PbTe Alloys Synthesized by Arc-Melting
- Author
-
Federico Serrano-Sánchez, Neven Biskup, Norbert M. Nemes, José Luis Martínez, José Antonio Alonso, Javier Gainza, María Teresa Fernández-Díaz, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), and Universidad Complutense de Madrid
- Subjects
Materials science ,Analytical chemistry ,02 engineering and technology ,010402 general chemistry ,lcsh:Technology ,01 natural sciences ,Article ,chemistry.chemical_compound ,Thermal conductivity ,nanostructuration ,Seebeck coefficient ,Thermoelectric effect ,General Materials Science ,Lead telluride ,lcsh:Microscopy ,lcsh:QC120-168.85 ,Thermoelectrics ,neutron powder diffraction ,lcsh:QH201-278.5 ,lcsh:T ,Física de materiales ,Doping ,lattice thermal conductivity ,Lattice thermal conductivity ,Neutron powder diffraction ,021001 nanoscience & nanotechnology ,Thermoelectric materials ,0104 chemical sciences ,lead telluride ,chemistry ,lcsh:TA1-2040 ,lcsh:Descriptive and experimental mechanics ,Grain boundary ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,Crystallite ,lcsh:Engineering (General). Civil engineering (General) ,0210 nano-technology ,lcsh:TK1-9971 ,thermoelectrics ,Nanostructuration - Abstract
PbTe-based alloys have the best thermoelectric properties for intermediate temperature applications (500&ndash, 900 K). We report on the preparation of pristine PbTe and two doped derivatives (Pb0.99Sb0.01Te and Ag0.05Sb0.05Pb0.9Te, so-called LAST18) by a fast arc-melting technique, yielding nanostructured polycrystalline pellets. XRD and neutron powder diffraction (NPD) data assessed the a slight Te deficiency for PbTe, also yielding trends on the displacement factors of the 4a and 4b sites of the cubic Fm-3m space group. Interestingly, SEM analysis shows the conspicuous formation of layers assembled as stackings of nano-sheets, with 20&ndash, 30 nm thickness. TEM analysis shows intra-sheet nanostructuration on the 50 nm scale in the form of polycrystalline grains. Large numbers of grain boundaries are created by this nanostructuration and this may contribute to reduce the thermal conductivity to a record-low value of 1.6 Wm&minus, 1K&minus, 1 at room temperature. In LAST18, a positive Seebeck coefficient up to 600 &mu, V K&minus, 1 at 450 K was observed, contributing further towards improving potential thermoelectric efficiency.
- Published
- 2019
11. Nanostructured ZnFe2O4: An Exotic Energy Material
- Author
-
Murtaza Bohra, Vidya Alman, Rémi Arras, Mahindra Ecole Centrale [Hyderabad] (MEC), Matériaux et dispositifs pour l'Electronique et le Magnétisme (CEMES-MEM), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fabrication ,Materials science ,General Chemical Engineering ,Metal ions in aqueous solution ,Nanotechnology ,Review ,02 engineering and technology ,010402 general chemistry ,Smart material ,7. Clean energy ,01 natural sciences ,Energy storage ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,nanostructuration ,General Materials Science ,Thermal stability ,QD1-999 ,Hydrogen production ,Supercapacitor ,inverted ZnFe2O4 ,energy harvesting and storage ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Water splitting ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology - Abstract
More people, more cities; the energy demand increases in consequence and much of that will rely on next-generation smart materials. Zn-ferrites (ZnFe2O4) are nonconventional ceramic materials on account of their unique properties, such as chemical and thermal stability and the reduced toxicity of Zn over other metals. Furthermore, the remarkable cation inversion behavior in nanostructured ZnFe2O4 extensively cast-off in the high-density magnetic data storage, 5G mobile communication, energy storage devices like Li-ion batteries, supercapacitors, and water splitting for hydrogen production, among others. Here, we review how aforesaid properties can be easily tuned in various ZnFe2O4 nanostructures depending on the choice, amount, and oxidation state of metal ions, the specific features of cation arrangement in the crystal lattice and the processing route used for the fabrication.
- Published
- 2021
- Full Text
- View/download PDF
12. Fluoride solid electrolytes: From microcrystalline to nanostructured tysonite-type La0.95Ba0.05F2.95
- Author
-
Marc Leblanc, Alain Demourgues, Monique Body, Marie-Pierre Crosnier-Lopez, Vincent Maisonneuve, Belto Dieudonné, Christophe Legein, A. Bourdin, Cyrille Galven, Johann Chable, A.G. Martin, A. Jouanneaux, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), ANR-12-PRGE-0009,FLUOBAT,Batteries tout solide à ions fluorure(2012), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), and Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Analytical chemistry ,Impedance spectroscopy ,02 engineering and technology ,Thermal treatment ,Conductivity ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Ionic conductivity ,Specific surface area ,Materials Chemistry ,Fast ion conductor ,19F solid state NMR ,Pellet shaping ,Tysonite type structure ,Thermal analysis ,Design of experiment ,Mechanical Engineering ,Metals and Alloys ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Ball-milling ,Nanocrystalline material ,Rare earth fluorides ,0104 chemical sciences ,Microcrystalline ,13. Climate action ,Mechanics of Materials ,Solid electrolytes ,0210 nano-technology ,Nanostructuration - Abstract
International audience; Pure tysonite La0.95Ba0.05F2.95 is nanostructured by using the ball-milling technique. Size and pollution rate are minimized using the statistical method of Design of Experiment. The nanocrystalline powders are studied by X-ray and TEM analyses and by 19F solid state NMR and impedance spectroscopies. Specific surface area and F/OH substitution rate are estimated by BET measurements and thermal analysis (TGA-MS), respectively. Fluorine environments and mobilities are discussed on the basis of 19F solid state NMR data, both prior and after thermal treatment. The ionic conductivity, evaluated from sintered pellets, is compared at different thermal treatment temperatures. Thermal treatment tends to reduce microstrains up to 500 °C and to increase the grain size above this temperature. Optimal conductivity is obtained for a thermal treatment from 700 °C and no significant improvement of the conductivity by nanostructuration is observed.
- Published
- 2017
- Full Text
- View/download PDF
13. Protected Light-Trapping Silicon by a Simple Structuring Process for Sunlight-Assisted Water Splitting
- Author
-
Maïmouna W. Diouf, Bruno Fabre, Francis Gouttefangeas, Maïssa K. S. Barr, Loïc Joanny, Lionel Santinacci, Gabriel Loget, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Synthèse Caractérisation Analyse de la Matière (ScanMAT), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Centre de Microscopie Electronique à Balayage et Microanalyse (C.M.E.B.A.), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Microscopie Electronique à Balayage et microAnalyse (C.M.E.B.A.), and Université de Rennes (UR)
- Subjects
Silicon ,Materials science ,Structuring process ,chemistry.chemical_element ,Nanotechnology ,Functionalizations ,02 engineering and technology ,010402 general chemistry ,Porous silicon ,01 natural sciences ,law.invention ,Atomic layer deposition ,chemistry.chemical_compound ,Antireflective properties ,Electrochemical etching ,law ,Electrochemistry ,[CHIM]Chemical Sciences ,General Materials Science ,Light absorption ,Electromagnetic wave absorption ,Water splitting ,Deposition ,Hydrofluoric acid ,ComputingMilieux_MISCELLANEOUS ,Nano structuration ,Black silicon ,Photo-anodes ,Photo-electrochemical etching ,021001 nanoscience & nanotechnology ,Isotropic etching ,0104 chemical sciences ,Anti-reflective coating ,Semiconducting silicon ,Chemical engineering ,chemistry ,Titanium dioxide ,Photoelectrochemical cells ,Surface modification ,0210 nano-technology ,Scanning electron microscopy ,Nanostructuration ,Photoanode - Abstract
International audience; Macroporous layers are grown onto n-type silicon by successive photoelectrochemical etching in HF containing solution and chemical etching in KOH. This specific latter treatment gives highly antireflective properties of the Si surface. The duration of the chemical etching is optimized to render the surface as absorbent as possible and the morphology of the as-grown layer is characterized by scanning electron microscopy. Further functionalization of such structured Si surface is carried out by atomic layer deposition of a thin conformal and homogenous TiO 2 layer that is crystallized by an annealing at 450°C. This process allows using such surfaces as photoanodes for water oxidation. The 40 nm-thick TiO 2 film acts 2 indeed as an efficient protective layer against the photocorrosion of the porous Si in KOH, enhances its wettability and enlarge the light absorption of the photoelectrode. The macroporous Si has a beneficial effect on water oxidation in 1 M KOH and leads to a considerable negative shift of onset potential of ~400 mV as well as a 50 % increase in photocurrent at 1 V vs SCE.
- Published
- 2016
- Full Text
- View/download PDF
14. Plasma afterglow-assisted oxidation of iron–copper bilayers
- Author
-
Matteo Amati, A. Imam, Denis Mangin, Thierry Belmonte, T. Gries, Hikmet Sezen, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Elettra Sincrotrone Trieste
- Subjects
Equiaxed crystals ,Materials science ,Nanowire ,chemistry.chemical_element ,02 engineering and technology ,engineering.material ,01 natural sciences ,Afterglow ,Coating ,X-ray photoelectron spectroscopy ,Oxidation ,0103 physical sciences ,General Materials Science ,Physical and Theoretical Chemistry ,010302 applied physics ,Atmospheric pressure ,Bilayer ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Plasma afterglow ,Cu/Fe stacks ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Copper ,Atomic and Molecular Physics, and Optics ,CuO ,Crystallography ,Chemical engineering ,chemistry ,engineering ,Fe2O3 ,0210 nano-technology ,Nanostructuration - Abstract
International audience; Iron layers with variable thicknesses, deposited onto copper thin films, are oxidized by a plasma afterglow at atmospheric pressure. Such a bilayer arrangement enables the growth of caterpillar-like patterns covered by CuO and Fe2O3 nanostructures. Two main mechanisms are at stake: either copper comes up to the surface through cracks or boundaries between the columns of the coating, or it diffuses through parts of the Fe2O3 layer made permeable by tensile stress. Structures grown by the former mechanisms are characterized by a central channel, whereas those grown by the latter exhibit a plane interface above which stands an equiaxed grain heap. This result was used to localize the growth of nanowires in cracks formed priory to the afterglow-assisted treatment. By resorting to XPS microscopy experiments carried out with the scanning photoelectron microscope at the ESCAMicroscopy beamline of the Elettra synchrotron facility in Trieste, we could gain access to the surface composition of a single isolated pattern.
- Published
- 2016
- Full Text
- View/download PDF
15. Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System
- Author
-
Adrian Carretero-Genevrier, Andrés Gómez, Claire Jolly, Nicolas Maurin, Martí Gich, Michael Bahriz, David Sánchez-Fuentes, Dilek Cakiroglu, Laura Picas, Raissa Rathar, Ricardo Garcia-Bermejo, Benoit Charlot, European Research Council, Agence Nationale de la Recherche (France), Sorbonne Université, Centre National de la Recherche Scientifique (France), Région Ile-de-France, Ministerio de Ciencia, Innovación y Universidades (España), Matériaux, Micro et Nanodispositifs (M2N), Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon ,Materials science ,Thin films ,European research ,010401 analytical chemistry ,Piezoelectricity ,Library science ,Quartz ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Industrial and Manufacturing Engineering ,0104 chemical sciences ,Cantilevers ,[SPI]Engineering Sciences [physics] ,MEMS ,Mechanics of Materials ,media_common.cataloged_instance ,General Materials Science ,European union ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Nanostructuration ,media_common - Abstract
The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material. However, the current quartz manufacturing methods are based on bonding bulk micromachined crystals on silicon, which limits the size, the performance, the integration cost, and the scalability of quartz microdevices. Here, chemical solution deposition, soft‐nanoimprint lithography, and top‐down microfabrication processes are combined to develop the first nanostructured epitaxial (100)α‐quartz/(100)Si piezoelectric cantilevers. The coherent Si/quartz interface and film thinness combined with a controlled nanostructuration on silicon–insulator–silicon technology substrates provide high force and mass sensitivity while preserving the mechanical quality factor of the microelectromechanical systems. This work proves that biocompatible nanostructured epitaxial piezoelectric α‐quartz‐based MEMS on silicon can be engineered at low cost by combining soft‐chemistry and top‐down lithographic techniques., This project had received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project SENSiSOFT No.803004). L.P. acknowledges the ATIP–Avenir program for financial support. The authors thank C. André for providing the transfected HT1080 cell line and C. Cazevielle (MRI‐COMET, Montpellier) for assistance with biological SEM images. The authors thank D. Montero for performing the FEG–SEM images and chemical analysis. The FEG–SEM instrumentation was facilitated by the Institut des Matériaux de Paris Centre (Grant No. IMPC FR2482) and was funded by Sorbonne Université, CNRS and by the C'Nano projects of the Région Ile‐de‐France. The authors thank Frederic Pichot, David Bourrier, and Guilhem Larrieu for the expertise and advice during the cantilever lithographic processes. The authors also thank Wioletta Trzpil, Frank Augereau, and Eric Rosenkrantz for the advice during vibrometry measurements. A.G and M.G acknowledge funding from the Spanish Ministerio de Ciencia e Innovacion through the severo Ochoa program (CEX2019‐000917‐S).
- Published
- 2021
- Full Text
- View/download PDF
16. Self-assembly of a terbium(III) 1D coordination polymer on mica
- Author
-
Andrea Caneschi, Matteo Mannini, Quentin Evrard, Guillaume Calvez, Carole Daiguebonne, Yan Suffren, Olivier Guillou, Felix Houard, Giuseppe Cucinotta, Kevin Bernot, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), National Interuniversity Consortium of Materials Science and Technology (INSTM ), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Rennes MetropoleRegion Bretagne, INSA Rennes, CNRSCentre National de la Recherche Scientifique (CNRS), Fondazione Ente Cassa Risparmio di Firenze (progetto SPIN-E)Fondazione Cassa Risparmio Firenze [2017.0730], MIUR-Italy ('Progetto Dipartimenti di Eccellenza 2018-2022) [B96C1700020008], Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Università degli Studi di Firenze = University of Florence (UniFI)
- Subjects
Materials science ,Coordination polymer ,polymer ,General Physics and Astronomy ,chemistry.chemical_element ,Terbium ,02 engineering and technology ,engineering.material ,010402 general chemistry ,Epitaxy ,lcsh:Chemical technology ,01 natural sciences ,lcsh:Technology ,Full Research Paper ,chemistry.chemical_compound ,Adsorption ,nanostructuration ,luminescence ,Nanotechnology ,surface ,[CHIM]Chemical Sciences ,General Materials Science ,lcsh:TP1-1185 ,atomic force microscopy (AFM) ,Electrical and Electronic Engineering ,lcsh:Science ,lcsh:T ,Muscovite ,self-assembly ,021001 nanoscience & nanotechnology ,lcsh:QC1-999 ,0104 chemical sciences ,Crystallography ,Nanoscience ,chemistry ,engineering ,lcsh:Q ,Self-assembly ,Mica ,terbium complexes ,0210 nano-technology ,Luminescence ,lcsh:Physics - Abstract
The terbium(III) ion is a particularly suitable candidate for the creation of surface-based magnetic and luminescent devices. In the present work, we report the epitaxial growth of needle-like objects composed of [Tb(hfac)3·2H2O]n (where hfac = hexafluoroacetylacetonate) polymeric units on muscovite mica, which is observed by atomic force microscopy. The needle-like shape mimics the structure observed in the crystalline bulk material. The growth of this molecular organization is assisted by water adsorption on the freshly air-cleaved muscovite mica. This deposition technique allows for the observation of a significant amount of nanochains grown along three preferential directions 60° apart from another. The magnetic properties and the luminescence of the nanochains can be detected without the need of surface-dedicated instrumentation. The intermediate value of the observed luminescence lifetime of the deposits (132 µs) compared to that of the bulk (375 µs) and the CHCl3 solution (13 µs) further reinforces the idea of water-induced growth.
- Published
- 2019
- Full Text
- View/download PDF
17. Nanostructuration of thin metal films by pulsed laser irradiations: A review
- Author
-
Francesco Ruffino and Maria Grazia Grimaldi
- Subjects
Fabrication ,Nanostructure ,Materials science ,General Chemical Engineering ,Dewetting ,Femtosecond ,Nanotechnology ,02 engineering and technology ,Substrate (electronics) ,Review ,Ablation ,Nanosecond ,010402 general chemistry ,01 natural sciences ,law.invention ,lcsh:Chemistry ,law ,General Materials Science ,Nanoscopic scale ,Deformation ,Metal nanostructures ,Nanostructuration ,Picosecond ,Pulsed laser irradiation ,Thin metal films ,021001 nanoscience & nanotechnology ,Laser ,0104 chemical sciences ,lcsh:QD1-999 ,0210 nano-technology ,Ultrashort pulse - Abstract
Metal nanostructures are, nowadays, extensively used in applications such as catalysis, electronics, sensing, optoelectronics and others. These applications require the possibility to design and fabricate metal nanostructures directly on functional substrates, with specifically controlled shapes, sizes, structures and reduced costs. A promising route towards the controlled fabrication of surface-supported metal nanostructures is the processing of substrate-deposited thin metal films by fast and ultrafast pulsed lasers. In fact, the processes occurring for laser-irradiated metal films (melting, ablation, deformation) can be exploited and controlled on the nanoscale to produce metal nanostructures with the desired shape, size, and surface order. The present paper aims to overview the results concerning the use of fast and ultrafast laser-based fabrication methodologies to obtain metal nanostructures on surfaces from the processing of deposited metal films. The paper aims to focus on the correlation between the process parameter, physical parameters and the morphological/structural properties of the obtained nanostructures. We begin with a review of the basic concepts on the laser-metal films interaction to clarify the main laser, metal film, and substrate parameters governing the metal film evolution under the laser irradiation. The review then aims to provide a comprehensive schematization of some notable classes of metal nanostructures which can be fabricated and establishes general frameworks connecting the processes parameters to the characteristics of the nanostructures. To simplify the discussion, the laser types under considerations are classified into three classes on the basis of the range of the pulse duration: nanosecond-, picosecond-, femtosecond-pulsed lasers. These lasers induce different structuring mechanisms for an irradiated metal film. By discussing these mechanisms, the basic formation processes of micro- and nano-structures is illustrated and justified. A short discussion on the notable applications for the produced metal nanostructures is carried out so as to outline the strengths of the laser-based fabrication processes. Finally, the review shows the innovative contributions that can be proposed in this research field by illustrating the challenges and perspectives.
- Published
- 2019
18. View point on hydrothermal sintering: Main features, today's recent advances and tomorrow's promises
- Author
-
Graziella Goglio, Arnaud Ndayishimiye, Alain Largeteau, Catherine Elissalde, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), and Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Architectural engineering ,Ceramics ,Materials science ,Mechanical Engineering ,Metals and Alloys ,Sintering ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,Low-temperature sintering process ,Hydrothermal circulation ,Hydrothermal Sintering ,13. Climate action ,Mechanics of Materials ,Natural processes ,0103 physical sciences ,Low-temperature water-assisted densification ,General Materials Science ,0210 nano-technology ,Nanostructuration - Abstract
International audience; The development of new high performance materials faces the challenge of implementing low temperature densification processes to overcome current technological limitations. In this context, the hydrothermal sintering, inspired by the natural processes of geological and biological mineralization, has recently emerged as a major opportunity to develop new and/or optimized materials that respond to today's scientific, technological and related socio-economic issues. The purpose of this viewpoint paper is to present opinions and propose future outlook for hydrothermal sintering based on the most recent achievements.
- Published
- 2019
- Full Text
- View/download PDF
19. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths
- Author
-
Serge Ravaine, Hanbin Zheng, Christine Picard, Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Paul Pascal ( CRPP ), and Université de Bordeaux ( UB ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Materials science ,Scanning electron microscope ,General Chemical Engineering ,02 engineering and technology ,Surface finish ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,Coating ,Electrodeposition ,0103 physical sciences ,Specular reflection ,Texture (crystalline) ,Light absorption ,Anodizing ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,Ray ,[ CHIM.MATE ] Chemical Sciences/Material chemistry ,Optoelectronics ,Gold ,Anodization ,0210 nano-technology ,business ,Visible spectrum ,Nanostructuration - Abstract
Nanostructured metal surfaces have been known to exhibit properties that deviate from that of the bulk material. By simply modifying the texture of a metal surface, various unique optical properties can be observed. In this paper, we present a simple two step electrochemical process combining electrodeposition and anodization to generate black gold surfaces. This process is simple, versatile and up-scalable for the production of large surfaces. The black gold films have remarkable optical behavior as they absorb more than 93% of incident light over the entire visible spectrum and also exhibit no specular reflectance. A careful analysis by scanning electron microscopy reveals that these unique optical properties are due to their randomly rough surface, as they consist in a forest of dendritic microstructures with a nanoscale roughness. This new type of black films can be fabricated to a large variety of substrates, turning them to super absorbers with potential applications in photovoltaic solar cells or highly sensitive detectors and so on.
- Published
- 2018
- Full Text
- View/download PDF
20. Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si,Sn) thermoelectric alloys: An experimental and modeling approach
- Author
-
Stéphane Gorsse, Solange Vivès, Christelle Navone, Philippe Bellanger, Guillaume Bernard-Granger, Abdelkrim Redjaïmia, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Thermoelectrics ,Materials science ,Polymers and Plastics ,Phonon scattering ,Thermal conductivity reduction ,Spark plasma sintering ,Metallurgy ,Alloy ,Metals and Alloys ,[CHIM.MATE]Chemical Sciences/Material chemistry ,engineering.material ,Thermoelectric materials ,Microstructure ,Magnesium silicides ,Electronic, Optical and Magnetic Materials ,Thermal conductivity ,Nano ,Thermoelectric effect ,Ceramics and Composites ,engineering ,Composite material ,Nanostructuration - Abstract
International audience; In this work, we produce bulk nanostructured Mg2Si0.4Sn0.6 thermoelectric materials made of nanograins with sizes below 200 nm and containing a fine distribution of Sn-rich nanoparticles. These materials are obtained by the mechanical alloying followed by spark plasma sintering. The microstructure and transport properties, and their evolutions upon aging, are investigated. A model is developed to capture the different contributions to the phonon scattering processes arising from the nano/microstructural parameters. The calculations show quantitative agreement with the temperature and the temporal dependence of the lattice thermal conductivity of the nanostructured Mg2Si0.4Sn0.6 alloy. This work provides a general analytic approach for identifying the individual contributions of the microstructural parameters on the thermal conductivity which is a very important property controlling the performance of thermoelectric materials.
- Published
- 2015
- Full Text
- View/download PDF
21. Enhanced Piezoelectric Response in Nanostructured Ni/PVDF Films
- Author
-
Doaré O, Didier Lairez, D. Gorse, Bechelany M, M Tabellout, Jean-Eric Wegrowe, Mary-Claude Clochard, Oral O, Giuseppe Melilli, Galifanova A, Emmanuel Balanzat, Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Le Mans Université (UM), Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Techniques Avancées (ENSTA Paris), and Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0209 industrial biotechnology ,Materials science ,Nanostructure ,Track-etching ,Composite number ,Nanowire ,chemistry.chemical_element ,Composite ,02 engineering and technology ,Bending ,7. Clean energy ,Swift heavy ion irradiation ,020901 industrial engineering & automation ,[CHIM]Chemical Sciences ,Irradiation ,Composite material ,Piezoelectric polymer ,Nanowires ,021001 nanoscience & nanotechnology ,Piezoelectricity ,Nickel ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Electrode ,0210 nano-technology ,Nanostructuration - Abstract
International audience; Poly(vinylidene fluoride) (PVDF) composites have recently emerged as excellent candidates to fabricate flexible and small piezoelectric generators for portable devices. Among various techniques used to nanostructure polarized PVDF, the track-etching represents a new route for manufacturing nanostructured composite thin films. The moderate influence of irradiation on the piezoelectric response of polarized PVDF makes possible the use of this technique. In this way, a nanostructured composite based on polarized thin PVDF films comprising embedded nickel nanowires (Ni NWs) was fabricated. The nanostructured PVDF/Ni NWs composites were tested under bending conditions using a homemade pressure cell. Due to the presence of NWs, an increase of five-fold the initial dielectric permittivity, in the low-frequency range, was observed. It suggested the presence of an interfacial polarization at the PVDF/Ni interface. With respect to the etched PVDF, the nanostructured PVDF/Ni NWs composites exhibited a non-negligible enhancement by 2.5 times the piezoelectric efficiency. This result was attributed to the increased Au/Ni NWs electrode surface.
- Published
- 2018
- Full Text
- View/download PDF
22. Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses
- Author
-
Estela Baquedano, Pablo Caño, Pablo Aitor Postigo, Lorena Torné, Consejo Superior de Investigaciones Científicas (España), Ministerio de Economía y Competitividad (España), and European Commission
- Subjects
optical properties ,Fabrication ,Nanostructure ,Materials science ,General Chemical Engineering ,Nanowire ,plasma etching ,hydrophilic ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Soft lithography ,Article ,law.invention ,lcsh:Chemistry ,nanostructuration ,law ,Solar cell ,General Materials Science ,hydrophobic ,nanolithography ,glass ,Telecomunicaciones ,Plasma etching ,solar cells ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Nanolithography ,lcsh:QD1-999 ,Energías Renovables ,Wetting ,0210 nano-technology - Abstract
We investigated the fabrication of large-area (cm2) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D and 2D nanopatterns (nanowires and nanocones) and the effect of introducing disorder in the nanostructures. We observed an increase in the transmitted light for ordered nanostructures with a maximum value of 99% for wavelengths >600 nm when ordered nanocones are fabricated on the two sides of the solar glass. They produced an increment in the efficiency of the packaged solar cell with respect to the glass without nanostructures. On the one hand, the wettability properties showed that the ordering of the nanostructures improved the hydrophobicity of the solar glasses and increased their self-cleaning capacity. On the other hand, the disordered nanostructures improved the hydrophilic properties of solar glasses, increasing their anti-fogging capacity. The results show that by selecting the appropriate nanopattern, the wettability properties (hydrophobic or hydrophilic) can be easily improved without decreasing the efficiency of the solar cell underneath., The authors acknowledge the service from the X-SEM Laboratory at IMM, and funding from MINECO under project CSIC13-4E-1794 with support from EU (FEDER, FSE), TEC2014-54449-C3-3-R and PCIN-2013-179, We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).
- Published
- 2017
23. Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing
- Author
-
Benoît Duchemin, Denis Lourdin, Mark P. Staiger, Jean Eudes Maigret, Xavier Falourd, Amine Bendaoud, Eric Leroy, Anton Baranov, Bernard Cathala, Rene Kehrbusch, Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), University of Canterbury [Christchurch], St Petersburg State University (SPbU), Laboratoire Ondes et Milieux Complexes (LOMC), Centre National de la Recherche Scientifique (CNRS)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), Laboratoire de génie des procédés - environnement - agroalimentaire (GEPEA), Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Matrices Aliments Procédés Propriétés Structure - Sensoriel (GEPEA-MAPS2), Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut Universitaire de Technologie Saint-Nazaire (IUT Saint-Nazaire), Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Universitaire de Technologie - La Roche-sur-Yon (IUT La Roche-sur-Yon), Université de Nantes (UN)-Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN), MATIERES (Materials and Interfaces for Environment and Resources Exploitation) project - 'Reigion Pays de la Loire' council, Dumont d'Urville PHC (Hubert Curien Partnership), French Ministry of Education (Ministere de l'Education nationale de l'Enseignement superieur et de la Recherche (MENESR), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN)-Institut Universitaire de Technologie Saint-Nazaire (IUT Saint-Nazaire), Université de Nantes (UN)-Institut Universitaire de Technologie - La Roche-sur-Yon (IUT La Roche-sur-Yon), Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Université Bretagne Loire (UBL)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Université Bretagne Loire (UBL), Université Le Havre Normandie (ULH), Normandie Université (NU), LUNAM UNIVERSITY ONIRIS UMR 6144 GEPEA NANTES FRA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), and French Ministry of Education (Ministere de l'Education nationale de l'Enseignement superieur et de la Recherche (MENESR).
- Subjects
Nanostructure ,Materials science ,Polymers and Plastics ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Bioinspired ,chemistry.chemical_compound ,Cellulose xyloglucan ,Polymer blends ,Materials Chemistry ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Cellulose ,Composite material ,Elastic modulus ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Organic Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,1-ethyl-3-methylimidazolium acetate ,6. Clean water ,0104 chemical sciences ,Xyloglucan ,chemistry ,(EmimAc) ,Ionic liquid ,engineering ,Polymer blend ,Biopolymer ,Elongation ,0210 nano-technology ,Nanostructuration - Abstract
International audience; In this work, the properties of cellulose (CE)/xyloglucan (XG) biopolymer blends are investigated, taking inspiration from the outstanding mechanical properties of plant cell walls. CE and XG were first co-solubilized in an ionic liquid, 1-ethy1-3-methylimidazolium acetate, in order to blend these biopolymers with a varying CE:XG ratio. The biopolymers were then regenerated together using water to produce solid blends in the form of films. Water-soluble XG persisted in the films following regeneration in water, indicating an attractive interaction between the CE and XG. The final CE:XG ratio of the blends was close to the initial value in solutions, further suggesting that intimate mixing takes place between CE and XG. The resulting CE/XG films were found to be free of ionic liquid, transparent and with no evidence of phase separation at the micron scale. The mechanical properties of the blend with a CE:XG ratio close to one revealed a synergistic effect for which a maximum in the elongation and stress at break was observed in combination with a high elastic modulus. Atomic force microscopy indicates a co-continuous nanostructure for this composition. It is proposed that the non-monotonous variation of the mechanical performance of the films with XG content is due to this observed nanostructuration. (C) 2017 Elsevier Ltd. All rights reserved.
- Published
- 2017
- Full Text
- View/download PDF
24. Fast synthesis of ultrathin ZnO nanowires by oxidation of Cu/Zn stacks in low-pressure afterglow
- Author
-
D Mangin, A. Altaweel, Jaafar Ghanbaja, A. Imam, Thierry Belmonte, Patrice Miska, T. Gries, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Photoluminescence ,oxidation ,Nanowire ,chemistry.chemical_element ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Zinc ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI]Engineering Sciences [physics] ,nanostructuration ,General Materials Science ,Electrical and Electronic Engineering ,Vapor–liquid–solid method ,High-resolution transmission electron microscopy ,Wurtzite crystal structure ,Mechanical Engineering ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,General Chemistry ,021001 nanoscience & nanotechnology ,Copper ,0104 chemical sciences ,chemistry ,Chemical engineering ,Mechanics of Materials ,Quantum dot ,Cu/Zn stacks ,ZnO nanowires ,0210 nano-technology ,afterglow - Abstract
International audience; The synthesis of ultrathin, single-crystalline zinc oxide nanowires was achieved by treating in a flowing microwave plasma oxidation process, zinc films coated beforehand by a sputtered thin buffer layer of copper. The aspect ratio of the nanowires can be controlled by the following experimental parameters: treatment duration, furnace temperature, oxygen concentration. An average diameter of 6 nm correlated with a mean length of 750 nm can be reached with a fairly high surface number density for very short treatments, typically less than 1 min. The oxidized samples are characterized by means of SEM, XRD, SIMS, HRTEM and EDX techniques. Structural characterization reveals that these nanowires are single-crystalline, with the wurtzite phase of ZnO. Nanowires are only composed of ZnO without copper particles inside or at the end of the nanowires. Temperature-dependent photoluminescence measurements confirm that ZnO nanowires are of high crystalline quality and thin enough to produce quantum confinement.
- Published
- 2017
- Full Text
- View/download PDF
25. Bio-inspired Explosive Sensors and Specific Signatures
- Author
-
Valérie Keller, Dimitri A. Ivanov, Nelly Piazzon, Karine Bonnot, Thomas Cottineau, Laurent Schlur, Denis Spitzer, and David Doblas
- Subjects
Materials science ,Cantilever ,Explosive material ,Vapor pressure ,Nanotechnology ,Pentaerythritol tetranitrate ,General Medicine ,sensors ,bio-inspiration ,Characterization (materials science) ,chemistry.chemical_compound ,nanostructuration ,chemistry ,Explosive detection ,Trinitrotoluene ,Particle ,cantilever ,Engineering(all) - Abstract
The low vapor pressure of explosives makes the gaseous detection challenging and drives even the particle detection. There is a need to provide easy portable systems, highly spreadable. A bio-inspired concept was developed to detect explosive vapors with unprecedent sensitivities. Vertically aligned TiO2 nanotubes were grown on a cantilever. The sensors successfully detected trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN) with a minimum threshold concentration down to 0.8 ppt. This work describes also the investigations undertaken to develop the characterization of explosives by nanocalorimetry, which is able to identify explosives in form of single particles.
- Published
- 2014
- Full Text
- View/download PDF
26. Study of the formation process and the characteristics of tantalum layers electrodeposited on Nitinol plates in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid
- Author
-
Anthony Maho, Zineb Mekhalif, and Joseph Delhalle
- Subjects
Materials science ,Biocompatibility ,General Chemical Engineering ,Metallurgy ,Tantalum ,chemistry.chemical_element ,Shape-memory alloy ,engineering.material ,1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid ,Nitinol ,Corrosion ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,Chemical engineering ,Coating ,chemistry ,Electrodeposition ,Ionic liquid ,Electrochemistry ,engineering ,Layer (electronics) ,Nanostructuration - Abstract
Thanks to excellent mechanical and biochemical properties, the nickel-titanium shape memory alloy (Nitinol) constitutes an increasingly praised platform material in dental, cardiovascular and orthopedic biomedical devices. In order to strengthen their protective abilities toward corrosion, to reinforce their biocompatibility and to confer them specific osseointegrative capacities, Nitinol plates are covered with a thin tantalum layer by electrodeposition in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. XPS and SEM/EDX analyses highlight the chemical and morphological characteristics of the deposits: notably, these present an intrinsic dimpled nanometric structuration which is particularly remarkable considering the "soft" experimental conditions and very interesting for fundamental and applied bioactive perspectives. The present study investigates the specific and synergic effects of the Ni occurrence on the surface of the Nitinol substrates, the presence of fluorine species in the working bath, and the electrodeposition duration on the resulting formation process, morphology and chemical composition of the tantalum coating. Finally, samples are submitted to electrochemical characterizations and in vitro hydroxyapatite growth tests for a primary assessment of their corrosion resistance and osseoinductive features. © 2012 Elsevier Ltd. All Rights Reserved.
- Published
- 2013
- Full Text
- View/download PDF
27. The role of film composition and nanostructuration on the polyphenol sensor performance
- Author
-
Mateus D. Maximino, Cibely S. Martin, Matheus S. Pereira, Clarissa de Almeida Olivati, Priscila Alessio, and Universidade Estadual Paulista (Unesp)
- Subjects
Catechol ,LB films ,Materials science ,Polyphenol sensor ,Supramolecular chemistry ,Phthalocyanine ,PVD films ,Nanotechnology ,perylene, polyphenol sensor ,Metal ,phthalocyanine ,chemistry.chemical_compound ,nanostructuration ,chemistry ,visual_art ,Physical vapor deposition ,lcsh:TA401-492 ,visual_art.visual_art_medium ,Deposition (phase transition) ,lcsh:Materials of engineering and construction. Mechanics of materials ,Biosensor ,Perylene ,Nanostructuration - Abstract
Made available in DSpace on 2018-12-11T17:16:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-01-01 The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the composition and nanostructuration of the films on the impedance and voltammetric-based sensor performance to catechol detection. The films here studied were composed by a perylene derivative (PTCD-NH2) and a metallic phthalocyanine (FePc), using Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. The deposition technique and intrinsic properties of compounds showed influence on electrical and electrocatalytic responses. The PVD PTCD-NH2 shows the best sensor performance to the detection of catechol. Quantification of catechol contents in mate tea samples was also evaluated, and the results showed good agreement compared with Folin- Ciocalteu standard method for polyphenol detection. Departamento de Física Faculdade de Ciências e Tecnologia UNESP Univ. Estadual Paulista Departamento de Física Faculdade de Ciências e Tecnologia UNESP Univ. Estadual Paulista
- Published
- 2017
28. The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids
- Author
-
Sabina Georgiana Niţu, Catalin-Ilie Spataru, Bogdan Trica, Raluca Somoghi, Cristian Petcu, Violeta Purcar, Elvira Alexandrescu, Denis Mihaela Panaitescu, Maria-Luiza Jecu, and Dan Donescu
- Subjects
Materials science ,General Chemical Engineering ,Nanoparticle ,02 engineering and technology ,engineering.material ,silica nanoparticles ,010402 general chemistry ,organic–inorganic hybrids ,01 natural sciences ,sol–gel process ,Article ,lcsh:Chemistry ,Coating ,nanostructuration ,Organic chemistry ,General Materials Science ,Thermal stability ,Fourier transform infrared spectroscopy ,Alkyl ,Hydrophobic silica ,chemistry.chemical_classification ,Bilayer ,trialkylmonoalkoxysilanes ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Chemical engineering ,lcsh:QD1-999 ,engineering ,Surface modification ,0210 nano-technology - Abstract
Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS) and tetramethoxysilane (TMOS) (1:4 molar ratio) as precursors. After coating, silica nanoparticles (SiO2 NPs) functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS) were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR). The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8) has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°), compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness.
- Published
- 2016
29. Nanostructured Bi2Te3 Prepared by a Straightforward Arc-Melting Method
- Author
-
J. Bermúdez, José Antonio Alonso, Norbert M. Nemes, José Luis Martínez, F. Elhalouani, Federico Serrano-Sánchez, M. Gharsallah, and Ministerio de Economía y Competitividad (España)
- Subjects
Materials science ,Scanning electron microscope ,Alloy ,Nanotechnology ,ZT figure of merit ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Thermal conductivity ,Materials Science(all) ,Electrical resistivity and conductivity ,Seebeck coefficient ,Thermoelectric effect ,General Materials Science ,Composite material ,Thermoelectrics ,Nano Express ,Phonon scattering ,Lattice thermal conductivity ,Neutron powder diffraction ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Thermoelectric materials ,0104 chemical sciences ,Thermopower ,engineering ,0210 nano-technology ,Nanostructuration - Abstract
Thermoelectric materials constitute an alternative source of sustainable energy, harvested from waste heat. BiTe is the most utilized thermoelectric alloy. We show that it can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. A microscopic analysis from NPD data demonstrates a near-perfect stoichiometry of BiTe and a fair amount of anharmonicity of the chemical bonds. The as-grown material presents a metallic behavior, showing a record-low resistivity at 320 K of 2 μΩ m, which is advantageous for its performance as a thermoelectric material. SEM analysis shows a stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces perpendicular to the c crystallographic axis. This nanostructuration notably affects the thermoelectric properties, involving many surface boundaries that are responsible for large phonon scattering factors, yielding a thermal conductivity as low as 1.2 W m K around room temperature., We are grateful to the Spanish Ministry of Economy and Competitiveness for granting the project MAT2013-41099-R, and to PSI for making all facilities available for the neutron diffraction experiments.
- Published
- 2016
- Full Text
- View/download PDF
30. Nanostructured poly(urethane)s and poly(urethane-urea)s from reactive solutions of poly[styrene-b-butadiene-b-(methyl methacrylate)]-triblock copolymers
- Author
-
Boris Jaffrennou, Jean-Pierre Pascault, Françoise Méchin, Julien Portal, Ingénierie des Matériaux Polymères - Laboratoire des Matériaux Macromoléculaires (IMP-LMM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Rhéologie des Matières Plastiques (IMP-LRMP), Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Saint-Gobain Recherche (SGR), SAINT-GOBAIN, Ingénierie des Matériaux Polymères (IMP), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
Materials science ,Nanostructure ,Polymers and Plastics ,Polyaddition ,Polyurethanes ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Styrene ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Poly(urethane-urea)s ,Methyl methacrylate ,Solubility ,Polyurethane ,Organic Chemistry ,021001 nanoscience & nanotechnology ,Block copolymers ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymer blend ,Isophorone diisocyanate ,0210 nano-technology ,Nanostructuration - Abstract
International audience; Poly[Styrene-b-Butadiene-b-(Methyl Methacrylate)], SBM triblock copolymers have been incorporated in different polyurethane, PU formulations in order to prepare nanostructured materials. Macrodiols used for PU synthesis were based on a central bis-phenol A, BPA unit with two hydroxyl-terminated oligo(oxypropylene), BPA-POx or oligo(oxyethylene), BPA-EO chains with varying lengths. The initial solubility of the three blocks and the rheological behavior of the solutions in macrodiols and also in two diisocyanates, isophorone diisocyanate, IPDI, and 1,3-xylylene diisocyanate, XDI have been first characterized. The PMMA block is the most soluble and its role during the reaction is to stabilize the initial nanostructure or to control the reaction-induced microphase separation. Block copolymers can be dissolved first in the macrodiol, or preferably in the diisocyanate. With BPA-POx and low SBM content (50 wt%), a twin screw extruder had to be used for the blending. Under well-defined conditions, transparent linear PUs and linear segmented polyurethane-ureas have been prepared. This study confirms that for designing a nanostructured material from a reactive mixture with a triblock additive, one block, called “the nanostructuring block” has to remain soluble up to the end of the reaction.
- Published
- 2008
- Full Text
- View/download PDF
31. Structural phase transition in polycrystalline SnSe: A neutron diffraction study in correlation with thermoelectric properties
- Author
-
Oscar J. Dura, José Luis Martínez, Federico Serrano-Sánchez, Norbert M. Nemes, M. T. Fernández-Díaz, J. A. Alonso, and Ministerio de Economía y Competitividad (España)
- Subjects
Thermoelectrics ,Phase transition ,Materials science ,Condensed matter physics ,Neutron diffraction ,Analytical chemistry ,Intermetallic ,Lattice thermal conductivity ,Seebeck coefficient ,02 engineering and technology ,ZT figure of merit ,Atmospheric temperature range ,Neutron powder diffraction ,021001 nanoscience & nanotechnology ,Thermoelectric materials ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Differential scanning calorimetry ,Thermopower ,0103 physical sciences ,Thermoelectric effect ,010306 general physics ,0210 nano-technology ,Nanostructuration - Abstract
SnSe has been recently reported as a promising and highly efficient thermoelectric intermetallic alloy. The present material has been prepared by arc melting, as mechanically robust pellets, consisting of highly oriented polycrystals. The evolution of its orthorhombic GeS-type structure (space group Pnma) and phase transition to TlI-type structure (space group Cmcm) at high temperature has been studied in situ by neutron powder diffraction (NPD) in the temperature range 295-873 K. This transition has been identified by differential scanning calorimetry measurements, yielding sharp peaks at 795 K. In addition, thermal transport properties were measured in a similar temperature range, and large Seebeck coefficients, as high as 1050 μV K at 625 K, were found. The analysis from NPD data demonstrates an almost perfect stoichiometry, SnSe, that does not evolve with temperature, and a progressive decrease of the anharmonicity of the chemical bonds upon entering the domain of the Cmcm structure. SnSe undergoes a phase transition immediately below the maximum thermoelectric performance temperature. The present in situ neutron powder diffraction study establishes correlations between the structural evolution and the thermoelectric properties., We acknowledge the financial support of the Spanish ‘Ministerio de Economia y Competitividad’ (MINECO) to the project MAT2013-41099-R.
- Published
- 2016
32. Plasmonic Enhancement by a Continuous Gold Underlayer: Application to SERS Sensing
- Author
-
Jean-François Bryche, Philippe Gogol, Grégory Barbillon, Marc Lamy de la Chapelle, Michael Canva, Bernard Bartenlian, Raymond Gillibert, Julien Moreau, Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Fabry / Biophotonique, Laboratoire Charles Fabry (LCF), Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS), Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), HORIBA Europe Research Center [Palaiseau] (Horiba), HORIBA Scientific [France], Laboratoire Nanotechnologies Nanosystèmes (LN2 ), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-12-NANO-0016,PIRANEX,Instriumentation bimodale pour la détection et l'identification de biomolécules par imagerie plasmonique et spectroscopie Raman amplifiées par nanostructuration(2012), Institut d'électronique fondamentale ( IEF ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Charles Fabry ( LCF ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut d'Optique Graduate School ( IOGS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut d'Optique Graduate School ( IOGS ) -Centre National de la Recherche Scientifique ( CNRS ), Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques ( CSPBAT ), Université Paris 13 ( UP13 ) -Université Sorbonne Paris Cité ( USPC ) -Institut Galilée-Centre National de la Recherche Scientifique ( CNRS ), HORIBA Europe Research Center [Palaiseau] ( Horiba ), Laboratoire Nanotechnologies Nanosystèmes ( LN2 ), Université de Sherbrooke [Sherbrooke]-École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), and ANR-12-NANO-0016,PIRANEX,Instriumentation bimodale pour la détection et l'identification de biomolécules par imagerie plasmonique et spectroscopie Raman amplifiées par nanostructuration ( 2012 )
- Subjects
Nanostructure ,Materials science ,Biophysics ,SPR ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,symbols.namesake ,Surface plasmon resonance ,Plasmon ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics] ,SERS ,Localized Surface Plasmon Resonance ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Wavelength ,Biosensors ,symbols ,Plasmonics ,0210 nano-technology ,Biosensor ,Raman scattering ,Order of magnitude ,Excitation ,Biotechnology ,Nanostructuration - Abstract
International audience; In this paper, we report on an improved enhancement of the surface-enhanced Raman scattering (SERS) effect. Such improvement is obtained by using a continuous gold film (underlayer), which is added below an array of gold nanostructures. Two types of nanostructures were studied to validate our results: regular disk arrays with two diameters (110 and 210 nm) and lines with a width of 110 nm, all on a gold film of 30 nm thick. A supplementary gain of one order of magnitude on the SERS enhancement factor (EF) was experimentally demonstrated for several excitation wavelengths: 633, 660, and 785 nm. With such SERS substrates, EFs of 10 7 are observed for thiophenol detection. This opens the way towards routine and reliable detection of molecules at low concentration.
- Published
- 2016
- Full Text
- View/download PDF
33. Permanent superhydrophobic polypropylene nanocomposite coatings by a simple one step dipping process
- Author
-
Cintia Belén Contreras, Daniel Eduardo Weibel, Gabriela Ramos Chagas, and Miriam Cristina Strumia
- Subjects
Materials science ,ANGULO DE CONTACTO DE HISTERESIS ,Superhydrophobicity ,SUPERHIDROFOBICIDAD ,Otras Ciencias Químicas ,Ciencias Químicas ,General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,NANOESTRUCTURACIÓN ,Surfaces, Coatings and Films ,Coating ,DIOXIDO DE TITANIO ,Titanium dioxide ,Composite material ,Humanities ,Contact angle hysteresis ,CIENCIAS NATURALES Y EXACTAS ,Nanostructuration - Abstract
Superhydrophobic nanocomposite coatings on injection-molded polypropylene (PP) samples were prepared by dipping in xylene solvent containing titanium dioxide nanoparticles (NPs) functionalized with trimethoxypropyl silane. Alternatively, PP samples were dipped in a mixture of functionalized NPs and dissolved PP pellets. As a general result, dip-coated PP samples reached a permanent superhydrophobic state with a contact angle hysteresis (CAH) depending on NPs concentration and surface chemistry. SEM and profilometer measurements show a general trend in the decrease of CAH with the increase of aggregates and roughness. However some results showed that surfaces with the same roughness presented different CAHs. XPS measurements showed that low CAHs and self-cleaning properties were obtained only when the Ti?OH relative concentration on the surface was about 20%. At higher Ti?OH relative concentrations, the surface kept a superhydrophobic static state but lost its self-cleaning properties. This work highlights the fact that both control of the roughness together with chemical surface composition of polar groups have to be taken into account for a precise tuning on the superhydrophobic dynamic component of the surface. Fil: Contreras, Cintia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina Fil: Chagas, Gabriela. Universidade Federal do Rio Grande do Sul; Brasil Fil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina Fil: Weibel, Daniel E.. Universidade Federal do Rio Grande do Sul; Brasil
- Published
- 2014
34. Chemical synthesis of hollow sea urchin like nanostructured polypyrrole particles through a core-shell redox mechanism using a MnO2 powder as oxidizing agent and sacrificial nanostructured template
- Author
-
Laid Makhloufi, Hisasi Takenouti, Alain Pailleret, Claude Deslouis, M.C. Bernard, Bouzid Messaoudi, Lynda Benhaddad, Laboratoire Interfaces et Systèmes Electrochimiques (LISE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Technologie des Matériaux et Génie des Procédés (LTMGP), and Université Abderrahmane Mira [Béjaïa]
- Subjects
Materials science ,Inorganic chemistry ,Polypyrrole powder ,Manganese dioxide ,02 engineering and technology ,010402 general chemistry ,Polypyrrole ,01 natural sciences ,Redox ,Reactive template ,chemistry.chemical_compound ,symbols.namesake ,X-ray photoelectron spectroscopy ,Oxidizing agent ,Materials Chemistry ,[CHIM]Chemical Sciences ,Mechanical Engineering ,Metals and Alloys ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Dielectric spectroscopy ,Amorphous solid ,chemistry ,Chemical engineering ,Mechanics of Materials ,Core-shell redox mechanism ,symbols ,Cyclic voltammetry ,0210 nano-technology ,Raman spectroscopy ,Sacrificial template ,[CHIM.OTHE]Chemical Sciences/Other ,Nanostructuration - Abstract
Hollow sea urchin shaped nanostructured polypyrrole powder was successfully synthesized chemically in an acidic medium through a core-shell redox mechanism by using a nanostructured MnO2 powder as oxidizing agent and sacrificial template simultaneously. The morphology and the structure of MnO2 powder based reactant and produced polypyrrole powder were characterized respectively by using FEG-SEM, TEM, EDX and XRD techniques, which led us to demonstrate clearly the formation of hollow and open microparticles of polypyrrole with the presence of nanotubes on their surface. Nanostructured polypyrrole powder was found to be rather amorphous even though the shape of the polypyrrole particles was induced by the crystalline and nanostructured sea urchin shaped MnO2 powder on which they grew. In addition, neither MnO2 nor any manganese based species were found within the produced polypyrrole powder, which ruled out the production of composite materials. Moreover, Raman technique showed that the synthesized PPy powder was produced in the oxidized and thus conducting state. It actually possesses a 0.31 doping level and a 0.05 S cm(-1) conductivity, as shown by XPS and impedance spectroscopy measurements respectively. Cyclic voltammetry and UV-vis spectroscopy studies allowed us to identify the oxidation mechanism of pyrrole by our MnO2 powder through the detection of soluble Mn2+ cations as reaction products isolated after filtration of the reaction medium. (c) 2013 Elsevier B.V. All rights reserved.
- Published
- 2013
- Full Text
- View/download PDF
35. Effect of nanostructuration on compressibility of cubic BN
- Author
-
Gaston Garbarino, Y. Le Godec, Mohamed Mezouar, Oleksandr O. Kurakevych, Vladimir L. Solozhenko, P. Munsch, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), and Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Equation of state ,Materials science ,Thermodynamics ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Diamond anvil cell ,law.invention ,Inorganic Chemistry ,nanostructuration ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,equation of state ,Bulk modulus ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,superhard materials ,cubic boron nitride ,021001 nanoscience & nanotechnology ,Synchrotron ,Grain size ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Compressibility ,Nanometre ,0210 nano-technology ,Powder diffraction ,Письма в редакцию - Abstract
Compressibility of high-purity nanostructured cBN has been studied under quasi-hydrostatic conditions at 300 K up to 35 GPa using diamond anvil cell and angle-dispersive synchrotron powder X-ray diffraction. It has been found that the data fit to the Vinet equation of state yields the values of the bulk modulus B₀ of 375(4) GPa with its first pressure derivative B₀´ of 2.3(3), thus, the nanometer grain size (≈ 20 nm) results in a decrease of the bulk modulus by ≈ 9‰. Сжимаемость высокочистого наноструктурированного cBN была изучена в квазигидростатических условиях при 300 K до 35 GPa в алмазных наковальнях с помощью угловой дисперсионной рентгеновской дифракции синхротронного излучения. Описание полученных данных уравнением состояния Винэ дает значение модуля сжимаемости B₀ = 375(4) ГПа и его первой производной по давлению B₀' = 2.3(3). Наноразмер зерна (~ 20 нм) приводит к уменьшению модуля сжимаемости на ~ 9 %. Стисливість високочистого наноструктурованого cBN була вивчена в квазігідростатичних умовах при 300 K до 35 ГПa в алмазних наковальнях за допомогою кутової дисперсійної рентгенівської дифракції синхротронного випромінювання. Опис одержаних даних рівнянням стану Віне дає значення модуля стисливості B₀ = 375(4) ГПа і його першої похідної по тиску B₀' = 2.3(3). Нанорозмір зерна (~ 20 нм) приводить до зменшення модуля стисливості на ~ 9 %.
- Published
- 2012
- Full Text
- View/download PDF
36. An attempt to produce ex situ TTS to understand their mechanical formation conditions - The case of an ultra high purity iron
- Author
-
Yves Berthier, Sylvie Descartes, Magali Busquet, Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Descartes, Sylvie
- Subjects
Materials science ,Friction ,[SPI] Engineering Sciences [physics] ,High pressure torsion ,02 engineering and technology ,[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,[SPI]Engineering Sciences [physics] ,FIB ,0203 mechanical engineering ,[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Materials Chemistry ,Composite material ,Hydrostatic stress ,ComputingMilieux_MISCELLANEOUS ,Stress–strain curve ,Metallurgy ,Modeling ,Torsion (mechanics) ,Surfaces and Interfaces ,Tribological Transformed Structures ,Tribology ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,Grain size ,Finite element method ,Surfaces, Coatings and Films ,Ultra high purity ,020303 mechanical engineering & transports ,Mechanics of Materials ,0210 nano-technology ,Nanostructuration - Abstract
International audience; High pressure torsion (HPT) tests can be used to transform the structure of materials. Several studies in the literature highlight that such tests are a means of investigating certain formation mechanisms of Tribological Transformed Structures (TTS) outside contacts, as they reproduce conditions that are close to those found inside them (quasi-hydrostatic pressures and shearing) under conditions that are easier to control than in a real contact. As there is no unique path leading to deformation with TTS in real contacts, it has been decided to simplify the history of deformation as the first step in investigating the occurrence of TTS. In this study, a Bridgman anvil apparatus, which allows shearing samples in torsion under pressure, is used to test ultra high purity iron (99.99999%) with an initial grain size of 100 μm, under a mean pressure of 0.5 GPa. The microstructural investigations led to establishing a map identifying the refined zones within the volume of the sample and linked to contact conditions. This work considers these zones with the finest microstructure (size grains of about 220 nm) as "TTS". The experimental study is coupled with finite element analysis to investigate the specificity of the stress and strain cycles of the microstructure produced. Although further work is needed to validate the suggested comparison to friction induced transformed layers, the results showed that "TTS" are produced in a specific sample volume linked to sliding/adhesion contact conditions. The coupling between experiments and modeling shows that "TTS" formation can be associated with high hydrostatic stress components, high local plastic strains and high strain gradients.
- Published
- 2011
- Full Text
- View/download PDF
37. Nanostructuration of ionic liquids in fluorinated matrix: Influence on the mechanical properties
- Author
-
Jean-François Gérard, Jannick Duchet-Rumeau, Sébastien Livi, Ingénierie des Matériaux Polymères - Laboratoire des Matériaux Macromoléculaires (IMP-LMM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nanostructure ,Materials science ,Polymers and Plastics ,Ionic bonding ,02 engineering and technology ,Ionic liquid ,010402 general chemistry ,01 natural sciences ,Nanomaterials ,chemistry.chemical_compound ,Crystallinity ,Polymer chemistry ,Materials Chemistry ,Phosphonium ,Building block ,Alkyl ,chemistry.chemical_classification ,Small-angle X-ray scattering ,Organic Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,0210 nano-technology ,Nanostructuration - Abstract
International audience; In this work, a new method to prepare fluorinated coatings with mechanical properties enhanced has been developed. Pyridinium, imidazolium, and phosphonium ionic liquids have been synthesized and used as new synthetic building blocks in a polytetrafluoroethylene matrix. The strategy demonstrated using long alkyl chain cations provides an opportunity to prepare nanomaterials with a nanoscale structuration. The design of these new ionic and nanostructured materials is very dependent on the cation anion combination of ILs. The morphology analyzed by transmission electronic microscopy (TEM) shows that it is clearly tuned by the chemical nature of ILs. The finest structuration leads to a dramatic compromise between stiffness and deformation of material. The small-angle X-Ray scattering (SAXS) shows the evolution of the ionic networks during the mechanical sollicitation.
- Published
- 2011
- Full Text
- View/download PDF
38. Linear and quadratic magneto-optical Kerr effects in continuous and granular ultrathin monocrystalline Fe films
- Author
-
Gaspar Armelles, C. Martı́nez Boubeta, Alfonso Cebollada, Yves Huttel, and Borja Sepúlveda
- Subjects
Materials science ,Condensed matter physics ,business.industry ,Physics::Optics ,Magneto-optical anisotropy ,Photon energy ,Reflectivity ,Iron islands ,Magneto optical ,Ultrathin ,Monocrystalline silicon ,Magnetization ,Condensed Matter::Materials Science ,Quadratic equation ,Optics ,Physics::Atomic Physics ,Thin film ,Anisotropy ,business ,Magneto-optic properties ,Iron films ,Nanostructuration - Abstract
The effects of nanostructuration on the magneto-optic properties of ultrathin monocrystalline iron films grown on MgO (001) are investigated through the magneto-optic coefficients, which have a linear and quadratic dependence on the magnetization. The photon energy dependence of such magneto-optic coefficients is determined by measuring the relative variations of the reflectivity (ΔRpp/Rpp) for p-polarized incident and reflected light (p-p polarized) when the magnetization rotates in the plane of the sample. Thick Fe films present a magneto-optical anisotropy, which has a quadratic dependence on the magnetization. Such anisotropy is strongly reduced in nanostructured iron thin films formed by nanometric iron islands. The modifications induced by the nanostructuration are stronger for the magneto-optical coefficients, which have a quadratic dependence on the magnetization in contrast to the linear terms. A self-consistent effective-medium formalism is presented that explains the modifications induced in the magneto-optical coefficients by nanostructuration.
- Published
- 2003
39. Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting
- Author
-
Federico Serrano-Sánchez, M. Gharsallah, José Luis Martínez, Norbert M. Nemes, José Antonio Alonso, and Ministerio de Economía y Competitividad (España)
- Subjects
Materials science ,Band gap ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,Materials Science(all) ,Electrical resistivity and conductivity ,Seebeck coefficient ,0103 physical sciences ,Thermoelectric effect ,General Materials Science ,Thermoelectrics ,010302 applied physics ,Nano Express ,Condensed matter physics ,Doping ,Lattice thermal conductivity ,Bismuth telluride ,Neutron powder diffraction ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Grain boundary ,Crystallite ,0210 nano-technology ,Nanostructuration ,Solid solution - Abstract
In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm−1K−1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to −140 μV K−1 at 400 K, which is also beneficial for improved thermoelectric efficiency., This research was funded by the Spanish Ministry of Economy and Competitivity for granting the project MAT2013-41099-R.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.