1. Effect of Fe-C alloy additions on properties of Cu-Zr-Ti metallic glasses
- Author
-
Zhou Guojun, D.W. Ding, An-hui Cai, Qi An, Huiqiong Wu, Haibin Ning, Yanjiao Feng, Y. Liu, and Yuhui Peng
- Subjects
Amorphous metal ,Materials science ,Mechanical Engineering ,Alloy ,Metals and Alloys ,02 engineering and technology ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Corrosion ,Flexural strength ,Mechanics of Materials ,Materials Chemistry ,Pitting corrosion ,engineering ,Composite material ,0210 nano-technology ,Polarization (electrochemistry) ,Supercooling ,Glass transition - Abstract
The effect of Fe-C alloy additions on thermal, mechanical and corrosive properties of (Cu50Zr40Ti10)1-x(Fe-C)x (x = 0–2.20 at%) alloys were systematically investigated. The results show that the Fe and C additions can enhance glass transition temperature Tg and onset crystallization temperature Tx, but narrow supercooled liquid region ΔTx. Work-hardening can be clearly observed for the Cu-based bulk metallic glasses (BMGs) containing Fe and C elements. The yield strength (σy), fracture strength (σf) and plastic strain (ep) are drastically increased by Fe-C alloy additions. The corrosion potential Ec increases and the corrosion current density ic decreases with increasing Fe and C contents. The studied Cu-based BMGs exhibit unique and novel anodic polarization behavior characterized by current platforms plus current serrations. The current serrations are much larger for the Cu-based BMGs with 0 ≤ x ≤ 1.32 at% than for those with 1.76 ≤ x ≤ 2.20 at%. The corrosion surface images are changed from the pits to the passive films by Fe-C alloy additions. The corrosion behavior gradually transforms from the pitting corrosion to the self-passivization with increasing Fe and C contents. The corresponding mechanisms are also discussed.
- Published
- 2019
- Full Text
- View/download PDF