1. In-silico pre-clinical trials are made possible by a new simple and comprehensive lumbar belt mechanical model based on the Law of Laplace including support deformation and adhesion effects
- Author
-
Reynald Convert, Paul Calmels, Jérôme Molimard, Woo Suck Han, Rébecca Bonnaire, École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Institut Clément Ader (ICA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Thuasne, Université Jean Monnet - Saint-Étienne (UJM), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université Jean Monnet [Saint-Étienne] (UJM), and Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Subjects
Male ,Bending ,Physiology ,02 engineering and technology ,Pathology and Laboratory Medicine ,Stiffness ,Abdomen ,Medicine and Health Sciences ,Musculoskeletal System ,Body mass index ,Lumbar Vertebrae ,Multidisciplinary ,Deformation (mechanics) ,Physics ,Classical Mechanics ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Structural engineering ,Middle Aged ,021001 nanoscience & nanotechnology ,Deformation ,3. Good health ,Physiological Parameters ,Physical Sciences ,Lordosis ,Bending moment ,Medicine ,Female ,Anatomy ,medicine.symptom ,0210 nano-technology ,Geology ,Research Article ,Adult ,Body shape ,Science ,Materials Science ,Material Properties ,0206 medical engineering ,Pain ,Geometry ,Curvature ,Models, Biological ,Signs and Symptoms ,Lumbar ,Diagnostic Medicine ,parasitic diseases ,medicine ,Humans ,Mechanical Properties ,Lower back pain ,Damage Mechanics ,business.industry ,Body Weight ,Lumbosacral Region ,technology, industry, and agriculture ,Biology and Life Sciences ,equipment and supplies ,020601 biomedical engineering ,Trunk ,Spine ,business ,Low Back Pain ,human activities ,Mathematics - Abstract
International audience; Lower back pain is a major public health problem. Despite claims that lumbar belts change spinal posture due to applied pressure on the trunk, no mechanical model has yet been published to prove this treatment. This paper describes a first model for belt design, based on the one hand on the mechanical properties of the fabrics and the belt geometry, and on the other hand on the trunk geometrical and mechanical description. The model provides the estimation of the pressure applied to the trunk, and a unique indicator of the belt mechanical efficiency is proposed: pressure is integrated into a bending moment characterizing the belt delordosing action on the spine. A first in-silico clinical study of belt efficiency for 15 patients with 2 different belts was conducted. Results are very dependent on the body shape: in the case of high BMI patients, the belt effect is significantly decreased, and can be even inverted, increasing the lordosis. The belt stiffness proportionally increases the pressure applied to the trunk, but the influence of the design itself on the bending moment is clearly outlined. Moreover, the belt/trunk interaction, modeled as sticking contact and the specific way patients lock their belts, dramatically modifies the belt action. Finally, even if further developments and tests are still necessary, the model presented in this paper seems suitable for in-silico pre-clinical trials on real body shapes at a design stage.
- Published
- 2019