1. Rh- and Rh–Ni–MgO-based structured catalysts for on-board syngas production via gasoline processing
- Author
-
K.I. Shefer, V.N. Rogozhnikov, N.V. Ruban, D.I. Potemkin, Pavel V. Snytnikov, and Vladimir A. Sobyanin
- Subjects
Materials science ,Methane reformer ,Renewable Energy, Sustainability and the Environment ,Wire mesh ,Energy Engineering and Power Technology ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Catalysis ,On board ,chemistry.chemical_compound ,Fuel Technology ,Chemical engineering ,chemistry ,Gasoline ,0210 nano-technology ,Carbon ,Naphthalene ,Syngas - Abstract
Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl and Rh/Ni–MgO/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl FeCrAlloy wire mesh supported catalysts were prepared via multistep procedure. They were characterized by XRD, SEM and TEM techniques. A comparative study of autothermal reforming (ATR) of isooctane and simulated gasoline (blends of isooctane, ortho-xylene and naphthalene) over Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl and Rh/Ni–MgO/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl was performed. Both catalysts showed excellent performance in ATR of isooctane at molar ratios of O2:C = 0.51 and H2O:C = 2.59, T = 750°С and GHSV = 10000 h−1. In the ATR of isooctane – o-xylene blend in presence of Rh–Ni-containing catalyst carbon formation was observed. Rh-containing catalyst demonstrated rather good activity and stability even in the case of isooctane – o-xylene – naphthalene blend.
- Published
- 2021