1. p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cells
- Author
-
Camille Geffroy, Takeru Bessho, Eric Cloutet, Fumiyasu Awai, Georges Hadziioannou, Hiroshi Segawa, Zeguo Tang, Samy Almosni, Anirudh Sharma, Eftychia Grana, Takumi Kinoshita, Thierry Toupance, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Research Center for Advanced Science and Technology [Tokyo] (RCAST), The University of Tokyo (UTokyo), Institut des Sciences Moléculaires (ISM), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
poly(ionic liquid) ,Materials science ,Energy Engineering and Power Technology ,Hole transport layer ,02 engineering and technology ,hole transport layer ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Hole transporting material ,chemistry.chemical_compound ,Materials Chemistry ,Electrochemistry ,Chemical Engineering (miscellaneous) ,Electrical and Electronic Engineering ,Perovskite (structure) ,chemistry.chemical_classification ,p-doping ,poly(ionic-liquid) ,Perovskite solar cells ,Doping ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Hysteresis ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Ionic liquid ,doping mechanism ,0210 nano-technology - Abstract
International audience; An efficient metal-free formulation of a hole transport material (HTM) based on an ionic liquid polymer is developed for n-i-p perovskite solar cells (PSCs), to address reproducibility issues related to the use of complex dopant mixtures based on lithium salts and cobalt coordination complexes. The conductivity of the HTM is thus significantly improved by 4 orders of magnitude, up to 1.9 x 10-3 S.cm-1, using poly(1-butyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imide) (PVBI-TFSI) as dopant. Introduced in the FTO/c-TiO2/mp-TiO2/K0.05(MA0.15FA0.85)0.95PbI2.55Br0.45/HTM/Au PSC configuration, PVBI-TFSI-HTM formulation shows power conver-sion efficiency as high as 20.3 %, versus 18.4 % for the standard lithium salt-HTM formulation, with considerably re-duced hysteresis and excellent reproducibility. Mechanistic investigations suggest that PVBI-TFSI acts as a source of protons promoting the HTM oxidation.
- Published
- 2020
- Full Text
- View/download PDF