14 results on '"Nicolas Rolland"'
Search Results
2. Can Mobility Negative Temperature Coefficient Be Reconciled with the Hopping Character of Transport in Conducting Polymers?
- Author
-
Juan Felipe Franco-Gonzalez, Igor Zozoulenko, and Nicolas Rolland
- Subjects
Conductive polymer ,Range (particle radiation) ,Electrical mobility ,Materials science ,Polymers and Plastics ,Process Chemistry and Technology ,PEDOT ,electrical mobility ,negative temperature coefficient ,hopping transport ,band transport ,multiscale calculation ,Organic Chemistry ,Condensed Matter Physics ,Character (mathematics) ,PEDOT:PSS ,Chemical physics ,Electronics ,Den kondenserade materiens fysik ,Temperature coefficient - Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) is a conducting polymer that is used in a wide range of applications such as electronics, optoelectronics, and bio-electronics, where the fundamental understanding of the charge transport, and in particular of the electrical conductivity sigma, is a prerequisite to develop new high performance devices. There are many reports in the literature where the conductivity of archetypical conducting polymer PEDOT doped with tosylate (PEDOT:TOS) exhibits a dry negative temperature coefficient, d sigma/dT amp;lt; 0, which is strikingly different from the activated-type behavior with d sigma/dT amp;gt; 0 commonly observed in most conducting polymers. This unusual temperature dependence was attributed to the transition from the photon-assisted hopping to the metallic behavior, which is however difficult to rationalize taking into account that this transition occurs at high temperatures. In order to understand the origin of this unusual behavior, multiscale mobility calculations in PEDOT:TOS for the model of hopping transport were performed, where changes in the morphology and the density of states (DOS) with the temperature were explicitly taken into account. The morphology was calculated using the Molecular Dynamics simulations, and the hopping rates between the chains were calculated quantum-mechanically following the Miller-Abrahams formalism. Our results reproduce the observed negative temperature coefficient, where however the percolation analysis shows that this behavior mainly arises because of the changes in morphology upon heating when the system becomes less ordered. This results in a less efficient pi-pi stacking and hence lower mobility in the system. We therefore conclude that experimentally observed negative mobility temperature coefficient in conducting polymers at high temperatures is consistent with the hopping transport, and does not necessarily reflect the transition to a metallic band-like transport. Based on our multiscale modeling, we introduce a simple Gaussian Disorder Model for the efficient mobility calculations, where the DOS broadening is a function of the temperature, and where the transfer integral distribution is a bimodal distribution evolving with temperature. Funding Agencies|KAW foundation (Tail of the Sun); Swedish Research CouncilSwedish Research Council [2016-05990, 201704474]; Advanced Functional Material center at Linkoping University
- Published
- 2019
- Full Text
- View/download PDF
3. A model to predict image formation in the three-dimensional field ion microscope
- Author
-
Nicolas Rolland, Shyam Katnagallu, Rodrigue Lardé, Benjamin Klaes, Fabien Delaroche, Stefan Parviainen, Baptiste Gault, François Vurpillot, Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Gesellschaft, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Image formation ,Condensed Matter - Materials Science ,Tomographic reconstruction ,Materials science ,Field (physics) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Physics and Astronomy ,Image processing ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,Characterization (materials science) ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Hardware and Architecture ,Field desorption ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Grain boundary ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Field ion microscope - Abstract
Field ion microscopy (FIM) was the first technique to image individual atoms on the surface of a material. By a careful control of the field evaporation of surface atoms, the bulk of the material is exposed, and, through digital processing of a sequence of micrographs, an atomically-resolved three-dimensional reconstruction can be achieved. 3DFIM is particularly suited to the direct observation of crystalline defects that underpin the physical properties of materials: vacancies and vacancy clusters, interstitials, dislocations, or grain boundaries. Yet, further developments of 3DFIM are necessary to turn it into a routines technique. Here, we introduce first a protocol for 3DFIM image processing and subsequent tomographic reconstruction. Second, we propose a numerical model enabling simulation of the FIM imaging process. The model combines the meshless algorithm for field evaporation proposed by Rolland et al. (Robin–Rolland Model, or RRM) with fundamental aspects of the field ionization process of the gas image involved in FIM. The proposed model enables the simulation of imaging artefacts that are induced by non-regular field evaporation and by the disturbed electric field distribution near atomic defects. Our model enables more precise interpretation of 3DFIM characterization of structural defects.
- Published
- 2020
- Full Text
- View/download PDF
4. Large scale mobility calculations in PEDOT (Poly(3,4-ethylenedioxythiophene)): Backmapping the coarse-grained MARTINI morphology
- Author
-
Juan Felipe Franco-Gonzalez, Nicolas Rolland, Igor Zozoulenko, M. Modarresi, Swedish Research Council, Linköping University, Modarresi, Mohsen [0000-0002-0008-8175], Franco-Gonzalez, Juan Felipe [0000-0002-5095-5257], Zozoulenko, Igor [0000-0002-6078-3006], Modarresi, Mohsen, Franco-Gonzalez, Juan Felipe, and Zozoulenko, Igor
- Subjects
Materials science ,Nanostructure ,General Computer Science ,Stacking ,General Physics and Astronomy ,TOS ,Coarse-grained ,Bacicmapping ,Multiscale calculation ,Mobility [PEDOT] ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,PEDOT:TOS ,chemistry.chemical_compound ,Molecular dynamics ,PEDOT:PSS ,TOS [PEDOT] ,Teoretisk kemi ,Molecule ,General Materials Science ,Theoretical Chemistry ,Conductive polymer ,Mobility ,Doping ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Computational Mathematics ,chemistry ,Mechanics of Materials ,Chemical physics ,0210 nano-technology ,Poly(3,4-ethylenedioxythiophene) ,Backmapping - Abstract
8 p.-4 fig., Designing new high performances materials based on conducting polymers necessitates the development of multiscale models to investigate the charge transport in large realistic systems. In this work, we utilize Coarse-Grained (CG) Molecular Dynamics (MD) simulations to generate morphologies of Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with Tosylate (TOS) ions, and we develop a backmapping protocol to retrieve the atomistic details of the molecules afterwards. We demonstrate that the proposed protocol corrects for the nanostructure distortions induced by Coarse-Graining the system, namely a wrong density and an over-estimated stacking distance. Quantum chemical calculations are performed on the systems obtained after backmapping in order to calculate hopping rates for charge transport, and charge mobilities as a function of the PEDOT chain length and hydration level are then calculated by solving a master equation for transport. The results are identical to the calculations performed on PEDOT morphologies obtained by direct All-Atomistic (AA) MD simulations: the mobility increases with the chain length and decreases with the hydration level, this last effect being more pronounced for short chains. This definitely shows that the workflow CG MD backmapping mobility calculations is in position to calculate charge mobility in PEDOT based materials, paving the way for theoretical investigations of transport in more complex materials such as PEDOT doped with Polystyrene Sulfonate (PSS)., This research was funded by KAW foundation grant Tail of the Sun,and the Swedish Research Council Grant No. 2016-05990 and 2017-04474, and the Advanced Functional Material center at Linköping University.
- Published
- 2020
5. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal
- Author
-
Aleksandar Y. Mehandzhiyski, Nicolas Rolland, Igor Zozoulenko, Mathieu Linares, and Mohit Garg
- Subjects
Range (particle radiation) ,Materials science ,010304 chemical physics ,Monte Carlo method ,Complex system ,Biophysics ,01 natural sciences ,Biofysik ,Computer Science Applications ,Molecular dynamics ,Nanocrystal ,Macroscopic scale ,Chemical physics ,0103 physical sciences ,Particle ,Physical and Theoretical Chemistry ,Anisotropy - Abstract
Self-assembly is ubiquitous in nature and underlies the formation of many complex systems from the molecular to the macroscopic scale. Kern-Frenkel-like patchy particles are powerful models to investigate this phenomenon by computational methods such as Monte Carlo or molecular dynamics simulations. However, in these models the interactions are mediated by circular patches at the particle surface, which can be hardly mapped to realistic systems, containing for instance faceted particles with rectangular surfaces. In this paper we extend the model to take into account such geometries, and we use it to build a supra coarse-grained model of the cellulose nanocrystal where the interactions are parametrized against all-atomistic molecular dynamics simulations. The formation of cholesteric ribbons and defects in cholesteric droplets of the cellulose nanocrystal are investigated and confirm experimental behavior reported in the literature. The flexibility of this new patchy particle model makes it a powerful tool to develop supra coarse-grained models of self-assembly for large space and time scales and should find a broad range of applications for self-assembly in chemical and biological systems. Funding Agencies|Swedish Research CouncilSwedish Research Council [2016-05990]; Peter Wallenberg Foundation; Troedsson foundation; Digital Cellulose Center; Advanced Functional Material Center at Linkoping University; SeRC (Swedish e-Science Research Center); Wallenberg Wood Science Center
- Published
- 2020
6. Atom probe tomography for advanced nanoelectronic devices: Current status and perspectives
- Author
-
Nicolas Rolland, G. Audoit, Isabelle Mouton, Davit Melkonyan, Wilfried Vandervorst, Janusz Bogdanowicz, Didier Blavette, Jean-Paul Barnes, François Vurpillot, Claudia Fleischmann, Sylvain Barraud, Adeline Grenier, Sébastien Duguay, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), IMEC (IMEC), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), ANR-12-NANO-0001,APTITUDE,Etude par Sonde Atomique Tomographique de dispositifs 3D de la nanoélectronique : mise en place d'outils Innovants de Reconstruction et d'analyse quantitative.(2012), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Atom probe ,Materials science ,Mechanical Engineering ,Nanoelectronics ,Metals and Alloys ,Measure (physics) ,Nanotechnology ,02 engineering and technology ,Semiconductor device ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,law.invention ,Mechanics of Materials ,law ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Instrumentation (computer programming) ,Reconstruction ,Current (fluid) ,0210 nano-technology - Abstract
International audience; Atom probe tomography is unique in its ability to image in 3D at the atomic scale and measure composition in asemiconductor device with high sensitivity. However it suffers from many artefacts. The current state of the art ofnanoelectronic device analysis by atom probe is addressed and the challenges in device analysis in the next tenyears are laid out. Finally the improvements necessary in sample preparation, instrumentation and reconstructionprocedures are discussed
- Published
- 2018
- Full Text
- View/download PDF
7. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials
- Author
-
Brian P. Geiser, Nicolas Rolland, Sébastien Duguay, Didier Blavette, David J. Larson, François Vurpillot, Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Cameca, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Tip shape evolution ,Materials science ,Field (physics) ,Phase (waves) ,Evaporation ,Field evaporation ,02 engineering and technology ,Substrate (electronics) ,Atom probe ,01 natural sciences ,law.invention ,Optics ,law ,0103 physical sciences ,Instrumentation ,[PHYS]Physics [physics] ,010302 applied physics ,Mesoscopic physics ,Tomographic reconstruction ,business.industry ,Finite difference ,Mechanics ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Atom probe tomography ,0210 nano-technology ,business ,Simulation - Abstract
International audience; An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction.
- Published
- 2015
- Full Text
- View/download PDF
8. Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films
- Author
-
Igor Zozoulenko, Juan Felipe Franco-Gonzalez, and Nicolas Rolland
- Subjects
Materials science ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Amorphous solid ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,PEDOT:PSS ,General Materials Science ,Lamellar structure ,Graphite ,Thin film ,0210 nano-technology ,Poly(3,4-ethylenedioxythiophene) - Abstract
Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the e...
- Published
- 2018
9. Impact of local electrostatic field rearrangement on field ionization
- Author
-
Blazej Grabowski, Nicolas Rolland, Dierk Raabe, Michael P. Moody, Stefan Parviainen, Joerg Neugebauer, Baptiste Gault, Michal Dagan, Paul A. J. Bagot, Shyam Katnagallu, François Vurpillot, Ali Nematollahi, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Gesellschaft, University of Oxford [Oxford], Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Linköping University (LIU), University of Oxford, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Materials science ,Acoustics and Ultrasonics ,Charge density ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electric charge ,Molecular physics ,Atomic units ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ion ,Field desorption ,Ionization ,Electric field ,0103 physical sciences ,0210 nano-technology ,Field ion microscope ,ComputingMilieux_MISCELLANEOUS - Abstract
© 2018 IOP Publishing Ltd. Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.
- Published
- 2018
- Full Text
- View/download PDF
10. Understanding morphology-mobility dependence in PEDOT:Tos
- Author
-
Nicolas Rolland, Riccardo Volpi, Juan Felipe Franco-Gonzalez, Igor Zozoulenko, and Mathieu Linares
- Subjects
chemistry.chemical_classification ,Morphology (linguistics) ,Materials science ,Physics and Astronomy (miscellaneous) ,Field (physics) ,business.industry ,Nanotechnology ,02 engineering and technology ,Polymer ,Conjugated system ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Polymer Chemistry ,01 natural sciences ,0104 chemical sciences ,Semiconductor ,PEDOT:PSS ,chemistry ,Polymerkemi ,General Materials Science ,Charge carrier ,Inorganic materials ,0210 nano-technology ,business - Abstract
The potential of conjugated polymers to compete with inorganic materials in the field of semiconductor is conditional on fine-tuning of the charge carriers mobility. The latter is closely related to the material morphology, and various studies have shown that the bottleneck for charge transport is the connectivity between well-ordered crystallites, with a high degree of pi-pi stacking, dispersed into a disordered matrix. However, at this time there is a lack of theoretical descriptions accounting for this link between morphology and mobility, hindering the development of systematic material designs. Here we propose a computational model to predict charge carriers mobility in conducting polymer PEDOT depending on the physicochemical properties of the system. We start by calculating the morphology using molecular dynamics simulations. Based on the calculated morphology we perform quantum mechanical calculation of the transfer integrals between states in polymer chains and calculate corresponding hopping rates using the Miller-Abrahams formalism. We then construct a transport resistive network, calculate the mobility using a mean-field approach, and analyze the calculated mobility in terms of transfer integrals distributions and percolation thresholds. Our results provide theoretical support for the recent study [Noriega et al., Nat Mater 12, 1038 (2013)] explaining why the mobility in polymers rapidly increases as the chain length is increased and then saturates for sufficiently long chains. Our study also provides the answer to the long-standing question whether the enhancement of the crystallinity is the key to designing high-mobility polymers. We demonstrate, that it is the effective pi-pi stacking, not the long-range order that is essential for the material design for the enhanced electrical performance. This generic model can compare the mobility of a polymer thin film with different solvent contents, solvent additives, dopant species or polymer characteristics, providing a general framework to design new high mobility conjugated polymer materials. Funding Agencies|Swedish Energy Agency [38332-1, 43561-1]; Knut and Alice Wallenberg Foundation through the project The Tail of the Sun; Swedish Research Council via "Research Environment grant" [2016-05990]; SeRC (Swedish e-Science Research Center)
- Published
- 2018
11. New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples: Beyond the Hemispherical Constraint
- Author
-
James S. Speck, Baishakhi Mazumder, Sébastien Duguay, Nicolas Rolland, François Vurpillot, Didier Blavette, Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), University at Buffalo [SUNY] (SUNY Buffalo), State University of New York (SUNY), University of California [Santa Barbara] (UCSB), University of California, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of California [Santa Barbara] (UC Santa Barbara), and University of California (UC)
- Subjects
010302 applied physics ,Materials science ,Field (physics) ,business.industry ,3D reconstruction ,Resolution (electron density) ,Reconstruction algorithm ,02 engineering and technology ,Atom probe ,021001 nanoscience & nanotechnology ,01 natural sciences ,Evaporation (deposition) ,law.invention ,Optics ,law ,0103 physical sciences ,Perpendicular ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Standard algorithms ,0210 nano-technology ,business ,Instrumentation ,ComputingMilieux_MISCELLANEOUS - Abstract
Accuracy of atom probe tomography measurements is strongly degraded by the presence of phases that have different evaporation fields. In particular, when there are perpendicular interfaces to the tip axis in the specimen, layers thicknesses are systematically biased and the resolution is degraded near the interfaces. Based on an analytical model of field evaporated emitter end-form, a new algorithm dedicated to the 3D reconstruction of multilayered samples was developed. Simulations of field evaporation of bilayer were performed to evaluate the effectiveness of the new algorithm. Compared to the standard state-of-the-art reconstruction methods, the present approach provides much more accurate analyzed volume, and the resolution is clearly improved near the interface. The ability of the algorithm to handle experimental data was also demonstrated. It is shown that the standard algorithm applied to the same data can commit an error on the layers thicknesses up to a factor 2. This new method is not constrained by the classical hemispherical specimen shape assumption.
- Published
- 2017
- Full Text
- View/download PDF
12. Accuracy of analyses of microelectronics nanostructures in atom probe tomography
- Author
-
François Vurpillot, Sébastien Duguay, Didier Blavette, Robert Estivill, Nicolas Rolland, Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), STMicroelectronics [Crolles] (ST-CROLLES), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Permittivity ,Microscope ,Materials science ,nanostructure ,Nanotechnology ,02 engineering and technology ,Atom probe ,Dielectric ,01 natural sciences ,law.invention ,Optics ,law ,0103 physical sciences ,Materials Chemistry ,Microelectronics ,Electrical and Electronic Engineering ,Metal gate ,atom probe ,010302 applied physics ,[PHYS]Physics [physics] ,business.industry ,Transistor ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,simulation ,Electronic, Optical and Magnetic Materials ,Semiconductor ,metrology ,0210 nano-technology ,business - Abstract
International audience; \textcopyright 2016 IOP Publishing Ltd. The routine use of atom probe tomography (APT) as a nano-analysis microscope in the semiconductor industry requires the precise evaluation of the metrological parameters of this instrument (spatial accuracy, spatial precision, composition accuracy or composition precision). The spatial accuracy of this microscope is evaluated in this paper in the analysis of planar structures such as high-k metal gate stacks. It is shown both experimentally and theoretically that the in-depth accuracy of reconstructed APT images is perturbed when analyzing this structure composed of an oxide layer of high electrical permittivity (higher-k dielectric constant) that separates the metal gate and the semiconductor channel of a field emitter transistor. Large differences in the evaporation field between these layers (resulting from large differences in material properties) are the main sources of image distortions. An analytic model is used to interpret inaccuracy in the depth reconstruction of these devices in APT.
- Published
- 2016
- Full Text
- View/download PDF
13. Dynamic evolution and fracture of multilayer field emitters in atom probe tomography: a new interpretation
- Author
-
François Vurpillot, Nicolas Rolland, Didier Blavette, Sébastien Duguay, Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Surface (mathematics) ,[PHYS]Physics [physics] ,Materials science ,Field (physics) ,Delaunay triangulation ,Evaporation ,Geometry ,Nanotechnology ,02 engineering and technology ,Atom probe ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Curvature ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,law.invention ,law ,0103 physical sciences ,Constant-mean-curvature surface ,0210 nano-technology ,Instrumentation ,Common emitter - Abstract
International audience; Since Atom Probe Tomography reconstruction is based on ion back projection onto the emitter surface, understanding of the evolution dynamics of the tip shape is essential to get an accurate picture of the initial sample. In this article, an analytical approach is presented to dynamically describe the morphology evolution of complex multilayer structures during field evaporation. The model is mostly founded on the common continuity hypothesis, except for the classical hemispherical description of the tip apex, which is extended to a wider class of a constant mean curvature surface of revolution, the Delaunay surfaces. The results obtained from this approach are comparable with standard numerical simulations, but the analytical character of the model gives more insight into the principles driving the emitter morphology. In particular, a complete picture of curvature evolution during the transition from one layer to another is provided. Additionally, a field evaporation threshold for tip fracture in a bilayer sample is highlighted.
- Published
- 2015
- Full Text
- View/download PDF
14. Bridging the Gap between the Modeling Approach and the Experiment in Atom Probe Tomography
- Author
-
Lorenzo Mancini, Nicolas Rolland, L. Rigutti, F. Moyon, François Vurpillot, Didier Blavette, Hocine Hideur, and Williams Lefebvre
- Subjects
Bridging (networking) ,Materials science ,law ,Nanotechnology ,Atom probe ,Atomic physics ,Instrumentation ,law.invention - Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.