1. Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems
- Author
-
Alexander C. Smith, Matteo F. Iacchetti, Mark Husband, Charalampos D. Manolopoulos, Paul Miller, Kévin Berger, School of Electrical and Electronic Engineering [Manchester] (EEE), University of Manchester [Manchester], Groupe de Recherche en Energie Electrique de Nancy (GREEN), Université de Lorraine (UL), Electrical Capability Group, Rolls Royce PLC, Rolls-Royce Future Technologies Group, and This work was supported in part by the EPSRC, U.K. and in part by Rolls-Royce plc.
- Subjects
Materials science ,Superconducting electric machine ,Stator ,Mechanical engineering ,Superconducting magnet ,Propulsion ,engineering.material ,7. Clean energy ,01 natural sciences ,law.invention ,Quantitative Biology::Subcellular Processes ,law ,magnesium diboride ,Condensed Matter::Superconductivity ,0103 physical sciences ,Superconducting AC machine ,Electrical and Electronic Engineering ,010306 general physics ,010302 applied physics ,AC superconducting losses ,Rotor (electric) ,Superconducting wire ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetic circuit ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Electromagnetic coil ,engineering ,flux diverter - Abstract
International audience; Hybrid electric propulsion has been identified as a potential solu-tion to the ambitious environmental emissions and noise targets of the aerospace industry. Superconducting machines may be the key component of that topology enabling the high power densities and efficiencies needed in aerospace. Fully superconducting ma-chines, however, are not a mature technology. This paper looks at the different machine design configurations focusing on the stator magnetic circuit of a fully superconducting motor. The motor has been designed for an aerospace distributed fan propulsion motor with an aerospace benchmark specification of 1 MW. The AC ful-ly superconducting machine includes superconducting bulk magnets mounted on a conventional rotor core and an MgB2 su-perconducting wire wound stator. The AC losses in the stator winding are particularly sensitive to exposure to the main rotor field so different screening solutions were used to shield the su-perconducting windings from the rotor field. The effectiveness of the screening techniques for the stator coils and the impact on the machine performance and weight were evaluated for different stator designs, such as full stator core and air core with and without flux diverters. Various combinations of pole numbers, diverter geometries and magnetic materials have been checked. Results show that there is a trade-off between stator iron losses and superconducting losses.
- Published
- 2018
- Full Text
- View/download PDF