1. Synthesis of titanium dioxide nanoparticle by means of discharge plasma over an aqueous solution under high-pressure gas environment
- Author
-
Yaping Zhao, Hideki Kanda, Motonobu Goto, Wahyudiono, Siti Machmudah, and Hiroki Kondo
- Subjects
Titanium ,Aqueous solution ,Materials science ,Discharge plasma ,General Engineering ,Nanoparticle ,chemistry.chemical_element ,Plasma ,Engineering (General). Civil engineering (General) ,Titanium carbide ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Electric field ,Titanium dioxide ,Nanoparticles ,TA1-2040 ,High-resolution transmission electron microscopy ,Chemical decomposition - Abstract
In this study, the utilization of an electric field generated by the high voltage discharge plasma over a liquid water surface containing glycine compound to synthesize titanium dioxide (TiO2) nanoparticles was demonstrated. The experiments were conducted in a batch-type system with applied voltages ranging from 18.6 − 23.4 kV under various pressurized gases at room temperature. The results indicated that the applied voltages, applied pulse numbers, and pulsed repetition rates had a significant influence on the decomposition reaction of glycine compounds and titanium rod electrode erosion. The ultraviolet − visible (UV − vis) spectra showed that titanium dioxide nanoparticles could be observed in each solution product, and most of them were brookite-type structures. According to the HRTEM images, TiC was also produced as a nanoparticle product. Based on the experimental results, this process is applicable and could result in advanced metal-based nanoparticle synthesis technology.
- Published
- 2022