1. Specimen-Specific Finite Element Models for Predicting Fretting Wear in Total Hip Arthroplasty Tapers
- Author
-
L. D. Timmie Topoleski, Oleg Vesnovsky, Matthew Di Prima, Andrew P. Baumann, Amelia Vignola, F.E. Donaldson, and Nicole L L McMinn
- Subjects
Stem taper ,030222 orthopedics ,Materials science ,business.industry ,Arthroplasty, Replacement, Hip ,0206 medical engineering ,Finite Element Analysis ,Biomedical Engineering ,Fretting ,02 engineering and technology ,Structural engineering ,Prosthesis Design ,020601 biomedical engineering ,Finite element method ,03 medical and health sciences ,Fretting wear ,0302 clinical medicine ,Physiology (medical) ,Hip Prosthesis ,business ,Automated method ,Total hip arthroplasty - Abstract
Products from fretting wear and corrosion in the taper junction of total hip arthroplasty (THA) devices can lead to adverse local tissue reactions. Predicting damage as a function of design parameters would aid in the development of more robust devices. The objectives of this study were to develop an automated method for identifying areas of fretting wear on THA taper junctions, and to assess the predictive ability of a finite element model to simulate fretting wear in THA taper junctions. THA constructs were fatigue loaded, thus inducing damage on the stem taper. An automated imaging and analysis algorithm quantified fretting wear on the taper surfaces. Specimen-specific finite element models were used to calculate fretting work done (FWD) at the taper junction. Simulated FWD was correlated to imaged fretting wear. Results showed that the automated imaging approach identified fretting wear on the taper surface. Additionally, finite element models showed the greatest predictive ability for tapers exhibiting distal contact. Finite element models predicted an average of 30.3% of imaged fretting wear. With additional validation, the imaging and finite element techniques may be useful to manufacturers and regulators in the development and review of new THA devices.
- Published
- 2019